
Reliability Methods for

Finite Element Models





Reliability Methods for

Finite Element Models

Proefschrift

ter verkrijging van de graad van doctor

aan de Technische Universiteit Delft,

op gezag van de Rector Magnificus prof.dr.ir. J.T. Fokkema,

voorzitter van het College voor Promoties,

in het openbaar te verdedigen

op woensdag 1 april 2009 om 12:30 uur

door

Mohammadreza RAJABALINEJAD

Master in Civil Engineering

Iran University of Science and Technology

geboren Tehran, Iran

mailto:M.Rajabalinejad@gmail.com


Dit manuscript is goedgekeurd door de promotor:

Prof.ir. J.K. Vrijling

Copromotor: Dr.ir. P.H.A.J.M. van Gelder

Samenstelling promotiecommissie:
Rector Magnificus voorzitter

Prof.drs.ir. J.K. Vrijling Technische Universiteit Delft, promotor

Dr.ir. P.H.A.J.M. van Gelder Technische Universiteit Delft, copromotor

Prof.dr.ir. F.B.J. Barends Technische Universiteit Delft

Prof.dr. F. Nadim Norwegian Geotechnical Institute, Norway

Prof.dr. A. Noorzad Power and Water University of Technology, Iran

Prof.dr.ir. M.A. Gutirrez Technische Universiteit Delft

Dr.ir. L.E. Meester Technische Universiteit Delft

Dr.ir. P. Waarts TNO, the Netherlands

c© 2009 Mohammadreza Rajabalinejad and IOS Press

All rights reserved. No part of this book may be reproduced, stored in a retrieval

system, or transmitted, in any form or by any means, without prior permission

from the publisher.

ISBN 978-1-58603-991-2

Key words: reliability, probabilistic, dynamic bounds, monotonic, monotonicity,

Bayesian, Monte Carlo, flood defence, flood defense, dike, finite element.

Cover picture: a typical part of the Dutch dike, divided in sections and modeled

by finite elements.

Published and distributed by IOS Press under the imprint Delft University Press

Publisher

IOS Press, Nieuwe Hemweg 6b, 1013 BG Amsterdam, The Netherlands

tel: +31-20-688 3355, fax: +31-20-687 0019

www.iospress.nl, www.dupress.nl

email: info@iospress.nl

LEGAL NOTICE

The publisher is not responsible for the use which might be made of following

information.

PRINTED IN THE NETHERLANDS



In the name of who creates and owns souls and thoughts,

the most precious things that one can think about.

A. Ferdousi, 970 AC

This book is dedicated to

Ali and Ghadamkheir, my wonderful parents

Hossein, my lovely son

and Maryam





Contents

Summary v

1 Introduction 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Outline of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Probabilistic methods 3

2.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.2 Problem statement: high accuracy and complex models . . . . . . . 5

3 Dynamic Bounds 7

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3.2 Dynamic bounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3.2.1 Monotonicity . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.2.2 Thresholds . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.2.3 The Monte Carlo algorithm . . . . . . . . . . . . . . . . . . 10

3.3 The efficiency of dynamic bounds . . . . . . . . . . . . . . . . . . . 13

3.4 Example: impact of water waves on coastal structures . . . . . . . 15

3.4.1 Two dimensional model . . . . . . . . . . . . . . . . . . . . 15

3.4.2 Four dimensional model . . . . . . . . . . . . . . . . . . . . 19

3.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4 Improved Dynamic Bounds 23

4.1 The stable and unstable bounds . . . . . . . . . . . . . . . . . . . . 23

4.2 The most uncertain responses and transformation . . . . . . . . . . 24

4.2.1 Linear response . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.2.2 Second order response and extreme conditions . . . . . . . 25

i



ii Contents

4.2.3 Third and higher order responses . . . . . . . . . . . . . . . 28

4.3 Extended bounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.4 Monte Carlo Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.5 Numerical example . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.5.1 One dimensional model . . . . . . . . . . . . . . . . . . . . 36

4.5.2 Two dimensional model . . . . . . . . . . . . . . . . . . . . 37

4.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

5 Bayesian Monte Carlo 41

5.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

5.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

5.3 The prior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5.4 The likelihood . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

5.5 The posterior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5.5.1 Regularizer, ǫ . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5.6 Eliminating σ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5.6.1 Estimation of the regularizer ǫ . . . . . . . . . . . . . . . . 52

5.7 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.8 Numerical example . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5.8.1 Comparison between linear interpolation and Bayesian in-

terpolation . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5.8.2 Change of the PDF in a certain pixel . . . . . . . . . . . . . 58

5.9 Bayesian Monte Carlo . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.9.1 The reduced number of simulations . . . . . . . . . . . . . . 66

5.10 The Matrix form . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.11 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

6 A Case study, 17th Street Flood Wall 67

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

6.2 Importance of the flood defences in the Netherlands . . . . . . . . 68

6.3 The flood wall at the 17th Street Canal, New Orleans . . . . . . . . 69

6.3.1 Failure scenarios . . . . . . . . . . . . . . . . . . . . . . . . 71

6.3.2 An integrated model of failure mechanisms . . . . . . . . . 75

6.3.3 Loads and resistance . . . . . . . . . . . . . . . . . . . . . . 76

6.4 Probabilistic finite elements . . . . . . . . . . . . . . . . . . . . . . 76

6.5 Failure simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

6.5.1 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

6.5.2 Monte Carlo process . . . . . . . . . . . . . . . . . . . . . . 80

6.5.3 Safety factor . . . . . . . . . . . . . . . . . . . . . . . . . . 82

6.5.4 Variation of safety factors . . . . . . . . . . . . . . . . . . . 82

6.5.5 Probability of failure . . . . . . . . . . . . . . . . . . . . . . 83

6.5.6 Estimation methods for contribution to the failure . . . . . . 87

6.5.7 Contribution of variables to failure . . . . . . . . . . . . . . 88



Contents iii

6.6 Dynamic bounds (DB) applied to the flood wall . . . . . . . . . . . 89

6.6.1 DB considering two variables . . . . . . . . . . . . . . . . . 92

6.6.2 DB considering three variables . . . . . . . . . . . . . . . . 92

6.7 Summary of results . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

6.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

7 Conclusion and further research 99
7.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

7.2 Further research . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

References 102

A Prior 109
A.1 Derivation of the prior . . . . . . . . . . . . . . . . . . . . . . . . . 109

B Likelihood 111
B.1 Derivation of the Likelihood . . . . . . . . . . . . . . . . . . . . . . 111

List of Symbols 113

Acknowledgements 117

Index 119



iv Contents



Summary

Probabilistic techniques in engineering problems are needed because they pro-

vide a deeper understanding of failure mechanisms and occurrence probabilities

than deterministic techniques. In addition, they draw our attention to the con-

sequences of failure at an early stage in the design process. However, to achieve

these advantages, a well-defined model of the structure together with a robust

reliability technique is needed, as also advocated for instance by Haldar and Ma-

hadevan (2000). On the other hand, complex engineering problems with compli-

cated boundary conditions usually are analysed with the finite element technique

as presented in Smith and Griffiths (2004); Rajabalinejad et al. (2007a). The

finite element method provides an implicit approximation to the limit state equa-

tion (LSE) that is far more accurate than other approaches. Therefore, if one

wants to have the full advantage of the probabilistic approach one needs both an

advanced model and a supporting reliability technique.

For the reliability analysis of engineering structures a variety of methods is

known, of which Monte Carlo simulation is widely considered to be among the

most robust and most generally applicable. The absence of systematic errors and

the fact that its error analysis is well-understood are properties that many com-

peting methods lack. A drawback is the often large number of runs needed, par-

ticularly in complex models, where each run may entail a finite element analysis

or other time consuming procedure. Variance reduction methods may be applied

to reduce simulation cost. This study describes methods to reduce the simula-

tion cost even further, while retaining the accuracy of Monte Carlo, by taking

into account widely-present monotonicity in limit state equations or other prior

information.

This dissertation focuses on problems where a highly accurate estimate of the

failure probability is required, but an explicit expression for the limit state equa-

tion is unavailable and the limit state equation can only be evaluated without loss

v



vi Summary

of accuracy via finite element analysis or some other time consuming process.



1

Introduction

1.1 Motivation

Probability and Statistics provide a wonderful tool to describe our lack of knowl-

edge of the modeling and prediction. They courteously indicate our handicap in

science. Besides, probabilistic assessments are more complete than commonly-

used deterministic approaches in which we just rely on safety factors. At first, it

may seem that the safety factor is good enough for the design process, but if we

are interested in a very low probability of failure for some infrastructures1, the

safety factor lacks to help. In other words, given large consequences of failure,

the reliability assessment becomes much more important. Moreover, the reliabil-

ity assessment is a joint effort among different engineering fields, and it becomes

more and more important to engineers, policy makers and people. In addition, it

is interesting to see that how a multidisciplinary science is developed in different

manners.

To facilitate the reliability assessment of complicated structures or models,

two promising approaches are introduced in this dissertation: Dynamic Bounds

(DB) and Bayesian Monte Carlo (BMC). DB dramatically reduces calculation ef-

forts when there is monotonicity in a model with a limited number of influential

variables. Bayesian Monte Carlo is a robust method which takes into account prior

information.

The dynamic bounds method is applied to a part of the flood defence system

in New Orleans. This case study is the 17th Street Flood Wall which failed during

Hurricane Katrina. As a result, a complete process of the reliability assessment of

a complicated structure is presented.

1For instance, we require pf ≤ 1E − 4/yr for flood defences along the Dutch sea coast, where
pf is the probability of failure.

1



2 Chapter 1. Introduction

1.2 Outline of the thesis

After the introduction, Chapter 2 reviews the reliability methods. In this chapter

an overview of the most applicable ones is presented. Therefore, they are dis-

cussed in concept and compared in scope and power. Also references are provided

for further details.

Chapter 3 describes dynamic bounds in reliability assessment. The concept of

dynamic bounds is a simple concept which can facilitate the reliability analysis.

It is based upon the fact that normally a stable structure remains stable when

driving forces are reduced or the resistant parameters are increased. Apart from

the fact that dynamic bounds speed up the whole process, they can be stored and

used for the next series of simulations.

Chapter 4 gets along with Chapter 3 and suggests Improved Dynamic Bounds.

It shows that the concept of dynamic bounds is like the concept of Monte Carlo

which can be extended by taking the advantages of more properties. The sug-

gested technique assumes the order of response of a limit state equation.

Chapter 5 suggests Bayesian Monte Carlo which is another robust approach

towards facilitating the Monte Carlo process and speeding up the whole process.

The concept is also simple; we try to get a judgement tool by the Bayesian meth-

ods to regulate the simulation process according to a required accuracy. It also

makes possible to integrate the prior knowledge of the model as well as the prior

information of Monte Carlo simulations which becomes gradually available during

the calculations.

Chapter 6 presents a case study in which the probabilistic finite element is

integrated with dynamic bounds. This case study is 17th Street Flood Wall which

failed to protect New Orleans against Hurricane Katrina in 2005. The results are

compared with the classical Monte Carlo method as an accurate base.

Chapter 7 contains conclusions, recommendations, and suggestions for future

research projects.



2

Probabilistic methods

2.1 Overview

Probabilistic techniques in engineering problems are needed because they pro-

vide a deeper understanding of failure mechanisms and occurrence probabilities

than deterministic techniques. In addition, they draw our attention to the con-

sequences of failure at an early stage in the design process. However, to achieve

these advantages, a well-defined model of the structure together with a robust

reliability technique is needed as advocated for instance by Haldar and Mahade-

van (2000). On the other hand, complex engineering problems with complicated

boundary conditions usually are analysed with finite element techniques (FE) pre-

sented for instance in Smith and Griffiths (2004); Rajabalinejad et al. (2007a). It

provides an implicit approximation to the limit state equation (LSE) that is far

more accurate than other approaches. Therefore, if one wants to have the full

advantage of the probabilistic approach one needs both an advanced model and a

supporting reliability technique. Known reliability techniques can be classified in

three levels according to their performance.

Level I reliability methods compute only whether or not the reliability is suf-

ficient, rather than computing the real probability of failure. Incorporating this

method, Eurocode suggests that the limit state equation be checked in a standard

normal space, in the point (−0.7β, 0.8β) for resistance R and load S, respectively,

as depicted in Figure 2.1(a) (see de Normalisation (1994)). With more than

two variables, this principle is applied to the dominant variables as suggested

by de Normalisation (1994).

The standard level II method is the so-called First Order Reliability Method

(FORM), presented in Hasofer et al. (1973), in which the variables are assumed

to be independent. The LSE is linearized in the design point, the point where

the likelihood of failure is largest. In standardized space, this is the point on

3



4 Chapter 2. Probabilistic methods

(a) Level I (b) Level II

Figure 2.1: (a) Check point in a two dimensional standard normal space for a

level I reliability method (from de Normalisation (1994)). (b) Design point and

influence factors (α1 and α2) for the First Order Reliability Method Waarts (2000),

in a two dimensional standard normal space.

the LSE closest to the origin, see Figure 2.1(b). The failure probability is then

computed by replacing the LSE with its linearization. The contribution of each

of the variables to the failure can be estimated by the so-called α-factor, which

represents how much that variable influences the location of the design point (see

Figure 2.1(b)). According to Bjerager (1990), this method provides sufficiently ac-

curate results when the limit state function is smooth and the number of variables

is smaller than 50, and it is widely applied. However, in principle, FORM can only

be used for Gaussian variables and the conversion of problems with other distri-

bution types will generally introduce additional nonlinearity. In order to improve

the accuracy of FORM in the design point, a quadratic approximation to the limit

state equation could be used instead. The resulting method is sometimes called

the Second Order Reliability Method (SORM) presented by Fiessler et al. (1979).

Level III reliability methods compute the probability of failure based on the exact

probability density function and the exact limit state equation. The most reliable

level III method is the Monte Carlo method (MC) as indicated for instance in Ouy-

pornprasert (1988), which for this reason is often used as a base for comparison

of other methods. The MC technique consists of sampling the relevant variables

from their given distribution, subsequent checking whether failure occurs, and re-

peating this a number of times, say N. The observed proportion of failures p̂f of

the simulation serves as an estimate for the true probability of failure pf. The stan-

dard deviation of this estimate is
√

pf(1 − pf)/N, i.e., its accuracy increases as the

square root of N. This is one of the great advantages of Monte Carlo: the obtained

accuracy does not depend on the problem dimension. Even though this square-

root-of-N behavior is immutable, reduction of the error may sometimes still be

achieved, by application of variance reduction techniques. One of these is impor-

figures/levelI.eps
figures/levelII.eps


2.2. Problem statement: high accuracy and complex models 5

tance sampling (IS) and its application here would mean that, instead of sampling

from the given distribution, one samples from a distribution which is centered

at or near the design point. From the observed failures, by applying a weighing

scheme, an unbiased estimate of pf is be obtained that can be (much) more effi-

cient than simple Monte Carlo. Numerical integration is another approach whose

application to this reliability problem is straight-forward: one needs to integrate

the joint probability density function (JPDF) of the variables over the failure do-

main as indicated by Ouypornprasert (1988). Typically, the approximation error is

a low power of the grid size ∆, whereas the required number of evaluations of G is

inversely proportional to ∆n, where n is the problem dimension. This implies that

the computational effort to attain a fixed level of accuracy increases very rapidly

with the problem dimension. This remains true even if one choses an integration

method tailored to the situation, for example, the directional integration method

suggested by Deák (1980), based on transformation to polar coordinates. This

seems similar to a Monte Carlo version called directional sampling, see Nie and

Ellingwood (2000). Sometimes, no explicit expression of the LSE is available and

methods like FORM cannot be applied. If it is possible to evaluate the limit state

function G at any point in the parameter space the response surface method can

be applied. This method, originally proposed by Box and Wilson for modeling of

the response of a chemical process in Box and Wilson (1954), builds an approxi-

mation to the LSE from a collection of well-chosen points for which the limit state

function is evaluated and then proceeds in a fashion similar to FORM and SORM.

2.2 Problem statement: high accuracy and complex

models

The reliability methods which were briefly discussed present the main approaches

in the reliability analysis of limit state equations. When models are complex and

a high degree of accuracy is required, there are few viable methods.

The standard level II method, FORM, is widely applied and sometimes consid-

ered as reliable and robust addressed in Bjerager (1990). However, it has some

problems and limitations, some of which are illustrated in Figure 2.2. In Fig-

ure 2.2(a) a number of points on the limit state equation attains the minimum

distance to the origin, making the choice of design point ambiguous. When ap-

plying FORM, this tie would have to be broken, or else the procedure would not

converge, and one of the points would be chosen for the linearization. Clearly,

the influence factors are bound to be off as well. Another situation, which could

appear in any area of civil engineering, is depicted in Figure 2.2(b), where there

are two (or more) points with almost the same distance from the origin. In this

case, selection of one of them will give a skewed impression of the α factors, the

relative importance of the different variables in their contribution to the occur-

rence of failure will not be correctly assessed as advocated by Rajabalinejad et al.



6 Chapter 2. Probabilistic methods

(a) (b)

Figure 2.2: Limitations of the FORM: instability of calculations in (a), and incor-

rect estimates of influence factors, in both (a) and (b). The figures are depicted

in a standard normal space.

(2007a). Furthermore, when FORM is coupled with a complex implicit model,

its use of numerical derivatives introduces approximations into the analysis, with

loss of accuracy as a consequence.

Some of the mentioned drawbacks may be overcome by using SORM or the

response surface method. The essential drawback, however, is that an approxi-

mation to the limit state equation is made and this introduces inaccuracies that

cannot be recovered from. Therefore, if accuracy is required, numerical integra-

tion and Monte Carlo are the only options. Both of them can result in almost

exact solutions if it is possible to evaluate the limit state function for a sufficient

number of points. However, when evaluating the function is time-consuming this

is impractical because of the prohibitive computing effort. For numerical integra-

tion there is an additional problem for high-dimensional problems, as the required

number of evaluations grows rapidly as a function of dimension and desired ac-

curacy. This, in contrast with Monte Carlo, where the required computing effort

grows quadratically with the desired accuracy, independent of the problem di-

mension. In practice, this means that numerical integration outperforms Monte

Carlo (possibly with importance sampling) for low-dimensional problems and the

latter is more efficient in high-dimensional ones.

This dissertation focuses on problems where a highly accurate estimate of the

failure probability is required, but an explicit expression for the limit state equa-

tion is unavailable and the limit state function can only be evaluated without loss

of accuracy via finite element analysis or some other time consuming process.

figures/form2.eps
figures/form3.eps
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Dynamic Bounds

For the reliability analysis of engineering structures a variety of methods is known,

of which Monte Carlo simulation is widely considered to be among the most ro-

bust and most generally applicable. The absence of systematic errors and the

fact that its error analysis is well-understood are properties that many competing

methods lack. A drawback is the often large number of runs needed, particularly

in complex models, where each run may entail a finite element analysis or other

time consuming procedure. Variance reduction methods may be applied to reduce

simulation cost. This chapter describes a method to reduce the simulation cost

even further, while retaining the accuracy of Monte Carlo, by taking into account

widely-present monotonicity. For models exhibiting monotonic (decreasing or in-

creasing) behavior, dynamic bounds are defined, which in a coupled Monte Carlo

simulation are updated dynamically, resulting in a failure probability estimate, as

well as a strict (non-probabilistic) upper and lower bound. Accurate results are

obtained at a much lower cost than an equivalent ordinary Monte Carlo simula-

tion. In a two-dimensional and a four-dimensional numerical example, the cost

reduction factors are 130 and 9, respectively, at the 5% accuracy level. At higher

accuracy levels, this factor increases, though this effect is expected to be smaller

with increasing dimension.

3.1 Introduction

This chapter focuses on problems where a highly accurate estimate of the failure

probability is required, but an explicit expression for the limit state equation is

unavailable and the limit state equation can only be evaluated without loss of

accuracy via finite element analysis or some other time consuming process. The

main requirement, therefore, is to reduce the cost of calculations without reduc-

tion of accuracy. This can be achieved by a exploiting some properties common

7



8 Chapter 3. Dynamic Bounds

to many engineering problems: monotonicity and the threshold behaviour. To

illustrate these, consider that many engineering structures are designed with a

balance between resistance forces and driving forces causing stresses. The ratio

between the function of resistance and function of forces is called factor of safety,

Fs. In this case, Fs = 1 may be interpreted as a threshold, and any point above

this threshold is stable. If, for such a point, driving forces were to decrease of

resistance forces were to increase, everything would remain stable (Fs > 1). In

the Monte Carlo simulation this can be exploited since the stability or instability

of some points may be decided by comparison with earlier results, thus avoiding

evaluation of the limit state equation whenever possible. During the simulation

dynamic bounds are constructed. Progressively more accurate approximations to

the stable and unstable regions are obtained by generating points from the joint

probability density function and, when necessary, evaluating the limit state equa-

tion. From these regions an upper and a lower bound to pf may be computed,

while a regular Monte Carlo estimate is obtained as well.

In the following section, the algorithm is described in detail and some of its

properties are described.

3.2 Dynamic bounds

The mathematical formulation of the problem is the following. Given is a limit

state equation G(~x), where ~x = (x1, . . . , xn) represents the vector of relevant

parameters, and n is the dimension of the problem (for purposes of illustration

sometimes set equal to 2). The parameters are modeled as a random vector ~X =
(X1, . . . , Xn), whose joint probability density function f is given. Since G(~x) < 0
corresponds to failure, the probability of failure is given by

pf = P
(

G(~X) < 0
)

=
∫

· · ·
∫

~x:G(~x)<0
f (~x) d~x.

In the simple Monte Carlo approach, one would take N independent replications
~X1, . . . , ~XN of ~X and set

p̂f =
1

N

N

∑
i=1

1[G(~Xi) < 0],

where 1[C] equals 1 if condition C is true and 0 otherwise. This procedure would

take N evaluations of the limit state equation G. In many situations, however, G
is increasing in some variables and decreasing in others, which can be exploited to

reduce the number of times G(~x) is actually evaluated. First, it will be shown that

there is no loss in generality if one assumes that G is increasing (in each variable).
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3.2.1 Monotonicity

A function is called increasing with respect to a variable if increasing that variable

causes the output to increase, regardless the values of the other variables. If the

output decreases in this situation, one says that the function is decreasing with

respect to the variable. A function is called monotonic if, in each of its variables, it

is either increasing or decreasing. More formally, a limit state equation G is called

monotonic if, for each i, and for each choice of x1, x2, . . . , xi−1, xi+1, . . . , xn, the

function hi defined by

hi(x) = G(x1, x2, · · · , xi−1, x, xi+1, · · · , xn)

is either increasing, i.e., x ≤ y implies hi(x) ≤ hi(y), or decreasing, i.e., x ≤ y
implies hi(x) ≥ hi(y). Note that this definition also includes functions that may

not be strictly increasing.

Many engineering problems exhibit some form of monotonicity: a larger load

on a structure means a smaller safety margin or possibly failure; strengthening

the structure typically increases the safety margin. There are many examples of

such monotonic behavior. Therefore, assuming a monotonic limit state equation

does not limit the scope of application very much.

When the limit state equation G(~x) is monotonic with respect to all of its

variables, it is possible to convert the problem stated at the beginning of this

section to one with an increasing limit state equation, say, G1, as follows. Without

loss of generality, one may assume that G(x1, . . . , xn) is increasing in the first, say,

k variables, and decreasing in the remaining n − k. Define G1 by

G1(x1, · · · , xn) = G(x1, · · · , xk, ck+1 − xk+1, · · · , cn − xn), (3.1)

where ck+1, . . . , cn are constants, then G1 is clearly increasing in all of its variables.

Generally, one would also have to apply an appropriate transformation to the

distribution of ~X. However, in the case of independent normal variables X1,. . . ,

Xn, if one chooses ci = µi = E [Xi] for i = k + 1, . . . , n, then P
(

G(~X) < 0
)

=

P
(

G1(~X) < 0
)

and transformation is not even necessary. The explanation is that,

for any normally distributed Y with expectation µ, the random variable µ −Y has

the same distribution as Y.

From now on it will be assumed that one is dealing with a monotonically

increasing limit state equation.

3.2.2 Thresholds

Thresholds divide the space of model parameters into several subsets with desired

properties and make a logical division possible. A famous example is the already

mentioned factor of safety, the ratio between resistance and driving forces, Fs =
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resistance/force. According to this relation, Fs = 1 is defined as the threshold

of the model and the structure is stable or unstable when Fs above or below one,

respectively. For monotonic models the threshold concept is interesting from the

point of view of stability: if a response of a monotonic model is above its threshold,

it will remain stable by increasing its strength parameters and by decreasing the

driving forces. For a multidimensional model, threshold points could be identified

for any subset of the variables. In standardized space, starting from the origin,

one could decrease the variables in the subset simultaneously and at the same

rate, or alternatively, use some linesearch algorithm like bisection. The sequence

of points will at first be stable and then cross the threshold and become unstable.

The two points closest to the G(~x) = 0 boundary, on opposite sides are kept and

called the upper and lower threshold point. In principle, this could be done for any

subset of the variables, leading to a maximum of 2 (2n − 1) threshold points for

an n dimensional model (with 2n − 1 subsets of the variables).

It is clear that in case of an implicit limit state equation, and without explicit

knowledge of their location, serious computational effort may be required to de-

termine the threshold points. On the other hand, a collection of threshold points

may be a good starting point for the Monte Carlo algorithm described in the next

section, in the sense that fewer evaluations of the limit state equation a needed

than when starting randomly (as seems to be the alternative).

3.2.3 The Monte Carlo algorithm

To begin, let us consider the ideas of the Monte Carlo algorithm by looking

at a 2-dimensional example. After that, the mathematical description is given,

including computations. In Figure 3.1, a two-dimensional limit state equation

G(x1, x2) = 0 is depicted, as well as the contours of the joint probability density

function f (x1, x2) of the two variables (X1, X2). The limit state equation G(x1, x2)
is assumed to be monotonically increasing in both variables. This means that

G(x1, x2) < 0 for points below the LSE; we will call this the unstable region as

these points correspond to failures. For points above the LSE, G(x1, x2) > 0, this

is the stable region.

A first random point, ~x(1) = (x
(1)
1 , x

(1)
2 ), is generated from the JPDF f . In

Figure 3.1 it is depicted by a black square labeled 1, and upon evaluation it is

found that G(x
(1)
1 , x

(1)
2 ) < 0, hence it is a failure, in the unstable region. From

the monotonicity of G it is inferred that G(x1, x2) < 0 for all points (x1, x2) in the

quadrant to the left of and below (x
(1)
1 , x

(1)
2 ). In the next step, the point (x

(2)
1 , x

(2)
2 )

is generated from f , it turns out that G(x
(2)
1 , x

(2)
2 ) > 0. So point 2 is in the stable

region and all points in the right-upper quandrant from point 2 are stable as well.

This process continues; the result of a small number of iterations is shown

in Figure 3.1. The shaded regions constitute approximations to the stable and

unstable regions that can be used to obtain bounds on the probability of failure pf.
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Figure 3.1: Illustration of the dynamic bounds algorithm in which a two dimen-

sional joint probability density function is divided into the stable, unstable, and

unqualified regions.

The reader should keep in mind that in practice the location of the LSE-curve is

not known; it only gradually becomes visible as it is being sandwiched between

the increasingly more accurate approximations to the stable and unstable regions.

The corresponding dynamic upper and lower bounds on pf become tighter as the

number of generated points increases. Also note that for some generated points it

is not necessary to evaluate the limit state equation, because from other points it

can be determined whether the point is stable or unstable.

For the mathematical description we revert to dimension n. Define the stable

set S and the unstable set U by

S = {~x : G(~x) ≥ 0} and U = {~x : G(~x) < 0}. (3.2)

If two points ~x = (x1, . . . , xn) and ~y = (y1, . . . , yn) satisfy the relationship xi ≤ yi

for i = 1, . . . , n, then we say that ~x is less stable than ~y, or: ~y is more stable than ~x.

If ~x ∈ S then ~y ∈ S follows and a similar statement holds for U.

Consider the k-th iteration of the Monte Carlo process. A number of stable

points, say, ~s (1), . . . , ~s (p) and a number of unstable points ~u (1), . . . , ~u (q) have

been generated. The current approximation to the stable region S is the union of

figures/jpdf.eps
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the p orthants (generalizing the quadrants in Figure 3.1)

Hi = {~x : ~x is more stable than~s (i)}, i = 1, . . . , p. (3.3)

If ~s (i) is more stable than ~s (j), for some i and j, its orthant Hi is completely con-

tained in Hj, and there would be no loss of information if~s (i) would be dropped

from the list. Similarly, the current approximation to the unstable region U is the

union of

Li = {~x : ~x is less stable than~s (i)}, i = 1, . . . , q. (3.4)

From now on, it is assumed that only a minimal set of stable and unstable points

is retained during the simulation and Sk and Uk are the corresponding approxi-

mations to S and U:

Sk = ∪p
i=1Hi and Uk = ∪q

i=1Li. (3.5)

Now, imagine the next random point ~X(k+1) is generated from f . There are three

possibilities. The first is: ~X(k+1) ∈ Sk, that is, the point is located in a region that

is known to be part of the stable set. The second is: ~X(k+1) ∈ Uk, that is, the point

is located in a region that is known to be part of the unstable set; the count of the

number of failures should be incremented. The third is: ~X(k+1) 6∈ Sk ∪ Uk, that is,

the point is located in the unqualified region between Sk and Uk; G(~X(k+1)) needs

to be evaluated. If it is positive, ~X(k+1) is added to the collection of known stable

points and this collection is checked for its minimality, dropping any superfluous

points. If it is negative, ~X(k+1) is added to the collection of unstable points and

a similar update is performed. Note that the numbers p and q vary during the

simulation and in fact depend on the iteration number k.

Summarizing, the algorithm is as follows:

1. Determine S0 and U0. They could be empty sets or be determined from the

threshold points, as described. Set k = 0, nf = 0.

2. Increase k by 1 and generate ~X(k) from f . If ~X(k) ∈ Uk−1, add 1 to nf and

update Uk−1 to obtain Uk. If ~X(k) 6∈ Sk−1 ∪ Uk−1, evaluate G(~X(k)); if it is

negative, add 1 to nf and update Uk−1 to obtain Uk; otherwise, update Sk−1

to obtain Sk. Repeat until k = N.

3. p̂f = nf/N is a simple Monte Carlo estimate for pf.

This estimate p̂f is as good as an ordinary Monte Carlo estimate based on N inde-

pendent samples 1[G(~X(1)) < 0],. . . ,1[G(~X(N)) < 0], but requires evaluation of

G in only a fraction of the samples. However, the simulation also yields an upper

and a lower bound on pf, as follows. Clearly, UN ⊂ U and SN ⊂ S. So,

p̂u := P
(

~X ∈ UN

)

≤ pf and p̂s := P
(

~X ∈ SN

)

≤ 1 − pf, (3.6)

where ~X is an independent draw from f . These imply the following bounds on pf:

p̂u ≤ pf ≤ 1 − p̂s. (3.7)
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Remark. It may be hard to evaluate p̂u and p̂s in (3.7), because UN and SN are

irregular sets. The inclusion-exclusion principle may enable the computation of

two approximations that lead to looser bounds, as follows. From the representa-

tion of UN as the union of Li, i = 1, . . . , q, one obtains

P
(

~X ∈ UN

)

= P
(

~X ∈ Li, for some 1 ≤ i ≤ q
)

, (3.8)

and from the inclusion-exclusion principle it follows that this is greater than or

equal to:
q

∑
i=1

P
(

~X ∈ Li

)

− ∑
1≤i<j≤q

P
(

~X ∈ Li ∩ Lj

)

. (3.9)

If the coordinates of ~X = (X1, . . . , Xn) are independent:

P
(

~X less stable than ~u
)

=
n

∏
i=1

P(Xi ≤ ui) =
n

∏
i=1

Fi(ui), (3.10)

where Fi denotes the distribution function of Xi. Since Li ∩ Lj represents an or-

thant, just as the Li, P
(

~X ∈ Li ∩ Lj

)

can be computed similarly. This shows that a

lower bound for p̂u for pf can be computed from the marginal distributions of ~X.

Similarly, one obtains

P
(

~X ∈ SN

)

≥
q

∑
i=1

P
(

~X ∈ Hi

)

− ∑
1≤i<j≤q

P
(

~X ∈ Hi ∩ Hj

)

, (3.11)

where (in case of independence) the probabilities on the right-hand side can be

computed from

P
(

~X more stable than s
)

=
n

∏
i=1

P(Xi ≥ si) =
n

∏
i=1

(1 − Fi(si)). (3.12)

3.3 The efficiency of dynamic bounds

The estimate p̂f, obtained from the DB simulation with N iterations is in fact an

ordinary MC estimate, therefore with standard error
√

pf (1 − pf)/N. The distinc-

tion is that, instead of N evaluations of the LSE, a much smaller number suffices.

The exact number of evaluations NLF is random and dependent on the (random)

evolution of the simulation, so the efficiency can only be determined exactly after-

wards. At the start, however, one would like to predict NLF, which can be done to

some extent. If parts of the stable and unstable regions are known (for example,

after identifying threshold points) one can determine (estimate) the probability ∆

that the next random ~X is in the unqualified region, i.e., the unknown part. If it
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is in the unqualified region, the limit state equation is evaluated, and the known

part of either the stable or the unstable region increases, which means for the next

point ∆ has decreased a bit. If the point is in a known region, ∆ remains the same.

For the whole simulation, this probability is ∆k after k iterations, and it constitutes

a (weakly) decreasing sequence. Formally, one could write:

∆k = 1 − p̂s,k − p̂u,k,

where p̂s,k and p̂u,k are determined as in (3.6), with N replaced by k. A conser-

vative estimate for NLF therefore is N · ∆0, where ∆0 is the initial ∆, from the

initialization step (1) of the algorithm. The actual computation will most likely

not exceed ∆0 · N.

This result can also be used to estimate the cost of simulation to attain a re-

quired level of accuracy, by executing the procedure in two stages. For example,

suppose one has a preset tolerance that the standard error should be less than 5%.

This would mean

N = 400

(
1

pf
− 1

)

, (3.13)

replicates in the Monte Carlo simulation (where, for actual computation, an initial

estimate for pf should be inserted). In a pilot stage, one runs N1 < N replicates.

One may now estimate:

NLF ≈ 400 ∆N1

(
1

p̂f,N1

− 1

)

, (3.14)

as the total number of LSE evaluations needed.

It can be argued that ∆k will tend to decrease geometrically. This can also

be used to predict required computation costs from the results of pilot stages.

Suppose stage 1 is run with N1 Monte Carlo replications, requiring n1 LSE evalu-

ations, and stage 2 up to 10 · N1 replications, requiring n2 evaluations. Contem-

plating stage 3 going up to 100 · N1 replications, the geometric property predicts

that n3 : n2 ≈ n2 : n1, whence one would predict:

n3 ≈ n2
2

n1
. (3.15)

If the DB algorithm is combined with importance sampling, there will be an

additional gain in efficiency. For the same accuracy a smaller N than in (3.13) will

suffice. This will lead to a reduction of NLF as well, though the ∆k will behave

differently. For example, when the sampling is performed from a distribution that

is centered on or near the design point, then ∆0 will be larger and the updating

process will be different as well.

It is expected that the efficiency of the DB algorithm decreases as the num-

ber of variables increases, because it seems that the reduction of the unqualified
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part of the space proceeds less rapidly, which can be understood intuitively by a

geometrical consideration of the “known” orthants that accumulate in the cause

of the simulation. In fact, with a large number of variables, the efficiency of this

method may approach that of MC. However, nothing would be lost, if one had a

MC simulation with only a marginally reduced computational effort.

3.4 Example: impact of water waves on coastal struc-

tures

In order to illustrate the efficiency of DB in comparison with the other reliability

methods, a simple example of a limit state equation quantifying the effect of water

waves on coastal structures is presented. The results, in this case, have been

compared with the FORM, and several level III methods including Monte Carlo

(MC), numerical integration (NI), and importance sampling (IS). DB coupled with

IS is included in the comparison as well.

An important research topic in hydraulic engineering focuses on the impact of

water waves on walls and other coastal structures. Breaking waves create veloc-

ities and pressures with magnitude much larger than those associated with the

propagation under gravity of ordinary waves. They can generate pressures of up

to 1000 kN/m2, i.e., one hundred meters of water head! Although many coastal

structures are damaged by breaking waves, very little is known about the impact

mechanism. Insight into wave impact has been gained by investigating the role

of entrained and trapped air in wave impacts. A simplified model of maximum

pressure of ocean waves on the coastal structures is given by

Pmax = C × ρ × k × u2

d
, (3.16)

where ρ is density of water, k is the length of a hypothetical piston, d is the thick-

ness of the air cushion, u is the horizontal velocity of the advancing wave, and C
is a constant: 2.7 s2/m. Based on this model, we are desire to find the probability

that the (maximum) impact pressure exceeds 5 × 105N/m2. Before considering

this four-dimensional model, we analyse a two dimensional simplification. To-

gether, the results will then give some indication of dimension effects.

3.4.1 Two dimensional model

In a preliminary analysis, we fix two parameters at their expected values: k =
3.5 and d = 0.1. Rewriting the model a two-dimensional limit state equation is

obtained:

G(ρ, u) = 500000− 94.50× ρ × u2. (3.17)
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(a) 3D plot of LSE (b) Contour plot of LSE

Figure 3.2: (a) Visualization of the LSE (3.17) and the failure line, G(ρ, u) = 0.

(b) Contours of the limit state equation, the β value and the design point.

Var. µ σ PDF upper threshold lower threshold

ρ 1040 10 Normal µρ + 1.63σρ = 1056.30 µρ + 1.64σρ = 1056.40
u 1.5 0.45 Normal µu + 1.63σu = 2.2335 µu + 1.64σu = 2.238

Table 3.1: Variables in equation 3.17, its upper and lower threshold.

Figure 3.2(a) shows the limit state equation in 3D together with the failure plane

and Figure 3.2(b) shows its contours. It is increasing in both ρ and u. One wishes

to determine pf = P(G(ρ, u) < 0), where (ρ, u) are assumed to be independent

normally distributed, their parameters are given in Table 3.2.

A FORM analysis of Equation 3.17 is performed, the results of which are given

in in Table 3.2. The estimated probability of failure is 0.0466, which is very

close to the exact value. The influence factors show that the failure is much

more influenced by u than by ρ, as was expected. Level III reliability methods,

also, are applied to the LSE(3.17), the results are in Table 3.3. For each method

there are several rows, the first shows the number of evaluations of the LSE, the

second the corresponding estimate for pf, and the third shows the relative standard

Variable µ σ α Value in design point

ρ 1040 10 0.024 1040

u 1.5 0.45 1 2.255

β 1.68

Pf 0.0466

Table 3.2: FORM results of the LSE of equation 3.17.

figures/glsf.eps
figures/glsf2.eps
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Figure 3.3: Comparison between the results of several reliability methods: dy-

namic bounds (DB), Monte Carlo (MC), numerical integration (NI), importance

sampling (IS), and importance sampling coupled with dynamic bounds (IS-DB).

error, i.e., the standard error divided by pf. The number of evaluations is varied,

but the columns contain outcomes of approximately the same accuracy (except

for the NI results, that are matched with MC in terms of number of evaluations

of the LSE). For the DB method the last two rows present the lower and upper

bound from equation (3.7) (the reader is reminded that these bounds are not

confidence bounds, but hold with certainty). The required number of evaluations

for the DB results show that comparatively few of them are needed to obtain

accurate results. Looking at the 5% tolerance column (the second one), only 77

evaluations of the LSE were needed. As explained, this variance is the same as the

equivalent Monte Carlo (MC) simulation, which was based on 10,000 realizations.

Also note the number of LSE evaluations approximately triples when going to the

next column, which corresponds to ten times as many Monte Carlo realizations.

This means that the relative efficiency of DB with respect to Monte Carlo increases

with the precision required. A numerical integration method has been applied

on an equivalent mesh over the interval [−5σ, +5σ]. IS is applied centered at

the design point of the FORM results. As shown in the last row of table, the

combination of DB and IS provides robust approach. The convergence speeds of

different approaches are presented in Figure 3.3.

figures/comparison.eps
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A comparison between DB and other level III methods

DB 27 77 203 598 1828 5556 17286

pf 0.0490 0.0471 0.0455 0.0468 0.0467 0.0466 0.0466

Rel. s.e. 13.93E-2 4.5E-2 1.45E-2 0.45E-2 0.14E-2 0.045E-2 0.014E-2

pf ≥ p̂u = 0.042 0.0451 0.0463 0.0466 0.0466 0.0466 0.0466

pf ≤ 1 − p̂s = 0.053 0.0490 0.0472 0.0469 0.0466 0.0466 0.0466

MC 1E+3 1E+4 1E+5 1E+6 1E+7 1E+8 1E+9

pf 0.038 0.0477 0.0462 0.0467 0.0467 0.0466 0.0466

Rel. s.e. 15.9E-2 4.5E-2 1.44E-2 0.45E-2 0.14E-2 0.045E-2 0.014E-2

NI 1E+3 1E+4 1E+5 1E+6 1E+7 1E+8 1E+9

pf 0.0429 0.0465 0.0466 0.0466 0.0466 0.0466 0.0466

IS 1E+2 1E+3 1E+4 1E+5 1E+6

pf 0.0412 0.0464 0.0467 0.0468 0.0466

Rel. s.e. 15.8E-2 4.64E-2 1.42E-2 0.45E-2 0.14E-2

IS-DB 12 55 136 271 959

pf 0.0425 0.0460 0.0469 0.0468 0.0467

Rel. s.e. 16.4E-2 4.58E-2 1.44E-2 0.64E-2 0.17E-2

Table 3.3: Comparison between level III methods: dynamic bounds (DB), Monte

Carlo (MC), numerical integration (NI), important sampling (IS), and DB coupled

with IS (IS-DB). Rows marked pf contain the estimates for the probability of fail-

ure. Rel. s.e. is the relative standard error. The bottom two DB rows present p̂u

and 1 − p̂s: certain (i.e., non-probabilistic) bounds on pf. Bold numbers present

the acceptable engineering level.
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Variable µ σ PDF ut (upper threshold) lt (lower threshold)

ρ 1040 10 Normal µρ + 0.98σρ = 1049.80 µρ + 1.00σρ = 1050
k 3.5 0.7 Normal µk + 0.98σk = 4.186 µk + 1.00σk = 4.20
u 1.5 0.45 Normal µu + 0.98σu = 1.941 µu + 1.00σu = 1.95
d 0.1 0.01 Normal µd − 0.98σd = 0.0902 µd − 1.00σd = 0.09

Table 3.4: Variables in equation 3.18, its upper and lower threshold.

Variable µ σ α Value in design point

ρ 1040 10 0.020 1040

k 3.5 0.7 0.317 3.894

u 1.5 0.45 0.90 2.103

d 0.1 0.01 −0.217 0.097

β 1.49

Pf 0.0681

Table 3.5: FORM results of the LSE of equation 3.16.

3.4.2 Four dimensional model

Now, we revert to the original model as in (3.16) from which we derive a four-

dimensional limit state equation:

G(ρ, u, k, d) = 500000 − 2.7 × ρ × k × u2

d
, (3.18)

for which we wish to determine pf = P(G(ρ, u, k, d) < 0), where (ρ, u, k, d) are

independently normally distributed with parameters given in Table 3.4. This LSE

is increasing with respect to d and decreasing with respect to the others. In this

case, the upper and lower thresholds can be calculated as presented in Table 3.4.

A FORM analysis of Equation 3.18 is performed, the results of which are given in

in Table 3.5. The estimated probability of failure is 0.0681, which is off by 7%.

The influence factors and the design point are calculated. The latter is used as

center of the importance sampling distribution.

Level III methods are applied to the four-dimensional LSE Equation 3.18, and

the results are presented in Table 3.6. As noted, the FORM method does not give

a very accurate answer in this example, which is an illustration of the theoretical

limitation as discussed in Section 3.1. Still, the design point is useful as center for

the shifted distribution used for the IS and IS-DB methods. Table 3.6 presents a

comparison between DB and other methods. It again shows that the DB method

provides the same order of accuracy as MC at a much lower cost. The cost ratio

decreases with a factor of 2, when going from one column to the next.
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A comparison between DB and other level III methods

DB 227 1112 5230 24987 128883

pf 0.0630 0.0672 0.0645 0.0637 0.0638

Rel. s.e. 12.2E-2 3.7E-2 1.2E-2 0.38E-2 0.12E-2

pf ≥ p̂u = 0.0218 0.0462 0.0489 0.0556 0.0593

pf ≤ 1 − p̂s = 0.1719 0.1079 0.0843 0.0731 0.0687

MC 1E+3 1E+4 1E+5 1E+6 1E+7 1E+8 1E+9

pf 0.074 0.068 0.0628 0.0637 0.0638 0.0638 0.0638

Rel. s.e. 11.2E-2 3.7E-2 1.22E-2 0.38E-2 0.12E-2 0.045E-2 0.014E-2

IS 1E+2 1E+3 1E+4 1E+5 1E+6

pf 0.0600 0.0591 0.0631 0.0639 0.0637

Rel. s.e. 14.8E-2 4.6E-2 1.4E-2 0.44E-2 0.14E-2

IS-DB 68 427 2187 11025

pf 0.0630 0.0636 0.0637 0.0637

Rel. s.e. 14.9E-2 4.7E-2 1.4E-2 0.44E-2

Table 3.6: Comparison between level III methods: dynamic bounds (DB), Monte

Carlo (MC), numerical integration (NI), important sampling (IS), and DB coupled

with IS (IS-DB). Rows marked pf contain the estimates for the probability of fail-

ure; Rel. s.e. is the relative standard error. The bottom two DB rows present p̂u

and 1 − p̂s: certain (i.e., non-probabilistic) bounds on pf. Bold numbers present

the acceptable engineering level.
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3.5 Conclusions

The presented dynamic bounds (DB) method is suggested for the reliability anal-

ysis of the engineering problems exhibiting monotonicity with a limited number

of variables. It is fast and robust and intended for use with complicated limit

state equations like finite elements, enabling a probabilistic approach even for

these problems. Its main advantage over direct Monte Carlo simulation is that

only a fraction of the limit state equation evaluations (finite element analyses) is

needed, without loss of accuracy. By breaking up the simulation in two or more

stages, initial estimates of the computing effort to attain a required level of ac-

curacy can be updated at intermediate stages, resulting in good predictions of

computation costs. Moreover, the method can be coupled with the importance

sampling technique, further reducing the required calculations, speeding up the

whole procedure. This is illustrated by the two examples based on a nonlinear

limit state equation with two and four variables. In Table 3.3 one sees that DB

requires 77 instead of 10 000 evaluations for 5% accuracy. Furthermore, every ex-

tra digit of accuracy takes approximately 8 times as many evaluations, instead of

100 times, as is the case for Monte Carlo. In Table 3.6 these numbers are: 1112
instead of 10 000, and 25 times instead of 100 times. This illustrates an anticipated

dimension effect. However, there will always be some gain, even for much larger

dimensional problems. The basic concept and approach would be the same. It

seems, however, that these may be varied, perhaps leading to even faster algo-

rithms, a subject that warrants further research.
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4

Improved Dynamic Bounds

In the previous chapter the concept of dynamic bounds was described. Here, we

address its improvement assuming the order of the response of a limit state equa-

tion (LSE) is known. The suggested technique is explained, and results are pre-

sented and compared with the classical Monte Carlo (MC) and Dynamic Bounds

(DB). It is important to mention that we do not implement any uncertainty in the

modeling, and what is done is equal to MC.

4.1 The stable and unstable bounds

The main concept of dynamic bounds is dividing the range of a limit state equa-

tion (LSE) into the stable, unstable, and unqualified region as presented in Figure

3.1 and 4.1. Therefore, it was possible to derive two sets of stable S and unstable

U according to Equation 3.2. Here, the equivalent sets are introduced by Equation

4.1, where G(~x) is a monotonically increasing function1 and Sb and Ub are respec-

tively defined on the stable and unstable bounds. In other words, the difference

is that these sets only include the points on the stable and unstable bounds and

do not include the internal points. Therefore, if two points ~x = (x1, . . . , xn) and

~y = (y1, . . . , yn) which belong to S satisfy the relationship yi ≥ xi for i = 1, . . . , n
in a monotonic increasing function, then we say that ~x is less stable than ~y, or: ~y is

more stable than ~x. Then, Sb is any set such that if ~x ∈ Sb then there is not exists

~y ∈ Sb such that ~y 6= ~x and yi ≤ xi, i = 1, . . . , n. If ~x ∈ Ub and ~y ∈ Ub then a

similar statement holds.

1A similar statement is defined for a monotonic decreasing function. But it differs in such a way
that in a monotonically decreasing function, the LSE gets less stable by increasing of its variables.

23
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Sb = {~x : G(~x) ≥ 0 | ∀~x,~y ∈ Sb, ∄~y 6= ~x, yi ≤ xi, i = 1, . . . , n},

Ub = {~x : G(~x) < 0 | ∀~x,~y ∈ Ub, ∄~y 6= ~x, yi ≥ xi, i = 1, . . . , n}. (4.1)

In figure 4.1, a view of randomly generated values on the stable and unstable

bounds are shown after a few realization of a two dimensional LSE. The values on

the stable bounds are shown by s
(i)
b which will be extended to s

(i)′
b , and the same

concept holds for the values on the unstable bound u
(i)
b . This figure will be further

referred and discussed in Section 4.3.

It was also described in Chapter 3 that given the stable and unstable sets2, we

are able to define a lower bound and upper bound for the probability of failure

according to the following equation, derived in Equation 3.7.

p̂u ≤ pf ≤ 1 − p̂s.

As a result, the probability of hitting to the unqualified region, called as p∆can be

calculated by the following equation.

p∆ = 1 − pu − ps. (4.2)

4.2 The most uncertain responses and transforma-

tion

The main purpose of this chapter is to explore the unqualified region, called as ∆,

given some extra information over the LSE. This is in order to define the upper

and lower bounds of the response of the LSE by assuming that the order of the

response of a LSE and/or the value of its derivatives is known or can be calculated

without having an explicit LSE. In fact, given the order of the LSE, we are going

to build the most uncertain bounds and reduce the size of the unqualified region,

∆. In other words, we attempt to shrink the unqualified region by defining an

upper and lower bound for the the p∆ based on a given order of the LSE. Then,

we extend the stable and unstable sets. This, however, does not implement any

uncertainty in the results.

This concept is illustrated in Figure 4.1. In this figure, dynamic bounds for a

two dimensional limit state equation G(~x) are schematically shown. Here, a two

dimensional example is illustrated because of the fact that a 2D example is easier

to illustrate comparing with the higher or lower dimensions.

A limit state equation (LSE) in its general form can be written as G(~x) where

~x = (x1, . . . , xn) is a random vector in its general form assuming that the order

of the relation between G(~x) and xi is known, where 1 ≤ i ≤ n. In other words,

2These sets become gradually available during the Monte Carlo simulations.
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given the order of the hi in Equation 4.3, it is a possibility to extend the dynamic

bounds and shrink the unqualified space in its ith dimension.

hi(x) = G(x1, x2, · · · , xi−1, x, xi+1, · · · , xn) (4.3)

From now on we turn to a one dimensional problem and assume that points

A and B are two points on the lower (unstable) and upper (stable) bounds of the

defined dynamic bounds in a one dimensional LSE, where A = (xA, G(xA)) and

B = (xB, G(xB)). Therefore, xA ∈ Ub and xB ∈ Sb according to Equation 4.1.

It concludes that G(xA) < 0 and G(xB) ≥ 0. Accordingly, we can conclude for

points A and B (see Equations 3.3 and 3.4) that:

G(~x : ~x is less stable than ~xA) < 0,

G(~x : ~x is more stable than ~xB) ≥ 0.

4.2.1 Linear response

Now, having the unstable and stable bounds: points A and B, if we assume

that the response of the limit state function is linear, we can directly draw a line

from A to B and predict the behavior of the model in the unqualified region,

so the line from A to the B in Figure 4.2(a) presents the LSE. As a result, any

randomly generated number can be judged whether it is in stable/unstable area.

Thereafter, we can proceed the simulation without any extra realization of the

LSE. However, this usually does not happen, and we are usually confront with a

higher order response of LSEs. In this case, the local coordinates need to be fixed

on the bounds as shown in Figure 4.2(b); ξ and η present the local coordinates

and will be used in the rest of this chapter. Therefore, A = (ξ = 0, η = 0) and

B = (ξ = m, η = n), where m and n are known values and can be calculated.

4.2.2 Second order response and extreme conditions

Given the response of the model is a second order continuous and smooth, we

are looking for the most uncertain response of the LSE. Equation 4.4 presents a

general form of its response.

η = aξ2 + bξ + c. (4.4)

This function should fit in to the points A and B, therefore:

A = (ξ = 0, η = 0) =⇒ c = 0

B = (ξ = m, η = n) =⇒ b =
n − am2

m
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Figure 4.1: Distinction of the stable (safe), unstable (failure), and unqualified re-

gions in a two dimensional space. Also The extended bounds are typically shown.

figures/IDB.eps
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(a) Linear response of LSE where A is on the
lower bound and B is on the upper bound

(b) Linearly transferred coordinates of the
LSE from global to local (ξ, η). 1D

Figure 4.2: (a) A and B are two points located on the lower and upper limit

bounds, respectively in a one dimensional space of ~x = (x1). (b) Transferred

coordinates of the LSE according to A and B.

Figure 4.3 presents a few different positions in which a second order polyno-

mial passes through points A and B. There are an unlimited number of the second

order polynomials which can be depicted. But we are in favor of most uncertain

responses. The most uncertain response which can be defined by two bounds can

be obtained by minimization or maximization of the integral of the area under the

curve between points A and B with respect to each coordinate. The integration is

presented by Equation 4.5.

I =
∫ m

0
ηdξ =

1

3
am3 +

1

2
(

n

m
− am)m2 (4.5)

In order to get the maximum uncertainty, the integral should be minimized as

presented in the following equation.

∂I

∂m
= 0 =⇒ a =

n

m2
, b = 0, c = 0. (4.6)

Equation 4.7 presents the most uncertain second order response of the model (or

a lower bound of response surface) regarding its value in horizontal axis. This

equation is depicted in Figure 4.3 (a).

η = g(ξ) =
n

m2
ξ2 (4.7)

figures/IDLB1.eps
figures/xieta0.eps
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The same process needs to be done to get the upper bound of the uncertainty

through a maximization process. In other terms, the integration or area under the

curve between the points A and B should be maximized. The result is presented

in Figure 4.3(b). Therefore, Figures 4.3(a,b) present two conditions in which the

deviation of the response (uncertainty) is maximized in respect to the horizontal

axis, ξ, assuming a second order polynomial response of the limit state function.

As a result of these assumptions the lower and upper bounds can be extended to

the unqualified area; this concept reduces the Monte Carlo simulations efforts and

saves some costs for a time consuming process in the Monte Carlo simulations.

Remark. The integration needs to be also minimized and maximized in respect

to the vertical axis η in which two other polynomial will be obtained. These

polynomials are depicted in Figure 4.3(c,d). In conclusion, Figure 4.4 integrates

all the positions presented in Figure 4.3 and leads to the fact that the response of

a second order LSE remains inside of the enclosed region.

4.2.3 Third and higher order responses

Given a third order response of the LSE, which is usually advised in the interpo-

lation process Triebel (1978), assumed continuous and smooth, the LSE in the

unqualified region can be written in the following form:

η = aξ3 + bξ2 + cξ + d. (4.8)

This polynomial should pass through points A and B, where A = (0, 0) and

B = (m, n). This concludes that d = 0 and some relations between the other

parameters. Then we need to minimize (and maximize) the integral in Equation

4.9.

I =
∫ m

0
ηdξ =

1

4
am4 +

1

3
bm3 +

1

2
cm2 (4.9)

Besides, there is another assumption to get the equation of minimization solved.

We assume that the first derivative of the polynomial (Equation 4.8) at the point

A is zero to get the maximum distance from A. Then, the parameters of this

polynomial are obtained as follows.

∂I

∂m
= 0 =⇒ a =

n

m3
, b = 0, c = 0, d = 0. (4.10)

Therefore, Equation 4.11 presents the most uncertain third order response of the

LSE regarding its value in horizontal axis.

η = g(ξ) =
n

m3
ξ3 (4.11)

The integration also should be maximized in order to get the upper bound of the

response of the LSE. Besides, the polynomial should be minimized and maximized
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(a) 2nd order response of the LSE, mini-

mized with respect to ξ
(b) 2nd order response of the LSE, maxi-

mized with respect to ξ

(c) 2nd order response of the LSE, mini-
mized with respect to η

(d) 2nd order response of the LSE, maxi-
mized with respect to η

Figure 4.3: (a,b) Two bounds for a second order response of the limit state equa-

tion (LSE) for the most uncertain condition in respect to ξ. (c,d) Two bounds for

a second order response of the LSE for the most uncertain condition in respect to

η. ξ and η are local coordinates.

figures/2poly_1.eps
figures/2poly_2.eps
figures/2poly_3.eps
figures/2poly_4.eps
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(a) Extreme responses of a 2nd order LSE re-

mains inside the enclosed region.

(b) Extreme responses of a 3rd order LSE re-

mains inside the enclosed region.

Figure 4.4: Extreme responses of (a) 2nd order LSE and (b) 3rd order LSE, given

points Aand B.

regarding the vertical axis, η. Figure 4.4(b) presents a drawing of the LSEs for all

the extreme responses. In other words, the response of a LSE given a third order

continuous polynomial can not be out of the region, enclosed by the curves as

shown in Figure 4.4(b).

It might be interesting to present the lower bound of the response for higher

order of continuous and smooth polynomials. Figure 4.5 shows different bounds

from a linear LSE towards the LSE with order of 150 in which the integration is

minimized.

Information of the first derivative

Given some information over the derivatives at the start and end point of the

unqualified region, points A and B, a higher order polynomial response of the LSE

can be implemented with a smaller uncertainty. In fact, apart from the order of

the polynomials, there are still some information from the neighbors which have

not yet been considered. Since the dynamic bounds (DB) process is based upon

the shrinkage of the unqualified region, there will be some neighboring points

available. This fact encourages us to take the closest neighbor into account by the

concept of derivatives. For demonstration, we assume a fourth order polynomial

figures/2poly_5.eps
figures/3poly_5.eps
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Figure 4.5: Lower bounds for the higher order of the response. Apart from the

linear response, the order of polynomials are respectively equal to 2, 3, 4, 5, 10,

20, 50, 100 and 150.

in its general form as

η = aξ4 + bξ3 + cξ2 + dξ + e (4.12)

This polynomial should pass from points A and B, where A = (0, 0) and B =
(m, n). It concludes that e = 0, and another equation between the other parame-

ters. Therefore, we aim to minimize Equation 4.13.

I =
∫ m

0
ηdξ =

1

5
am5 +

1

4
bm4 +

1

3
cm3 +

1

2
dm2 (4.13)

Also we assume that the value of its first derivatives at points A and B are calcu-

lated and they are respectively equal to p and q. As a result of this minimization,

the parameters of the polynomial are obtained according to the following equa-

tion.

∂I

∂m
= 0 =⇒

a = −mp − mq + 3 n

m4
, b = −−4 n − 3 mp + mq

m3
, c = −3

p

m
, d = p, e = 0

(4.14)

As a result, the lower bound of the response of the LSE is presented in Equation

4.15, and depicted in Figure 4.6. The result of maximization of Equation 4.12 in

respect to the η is also included in this figure.

figures/npoly.eps
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(a) Lower and upper bounds for the fourth order
response

(b) Lower and upper bounds for the fourth order
response including the derivatives information

Figure 4.6: Figure (a) presents two limit bounds for the responses of the limit

state function assuming the response is fourth order. Figure (b) presents the same

bounds assuming the information of the first derivatives in points A and B.

η = g(ξ) − (mp − mq + 3 n) ξ4

m4
− (−4 n − 3 mp + mq) ξ3

m3
− 3

pξ2

m
+ pξ

To clarify the effect of applying information of the first derivatives, a compari-

son is provided in Figure 4.6. In this case, Figure 4.6(a) presents the fourth order

upper and lower bounds for the response of the LSE (in respect to the ξ), and

Figure 4.6(b) presents the bounds including the derivatives information. In other

words, the value of derivatives can effectively reduce the enclosed region which

is, in fact, the unqualified region.

4.3 Extended bounds

Having the boundaries of the response of a LSE, it is possible to extend the stable

or unstable regions without a realization of the LSE. We call the the outcomes as

the extended stable region and extended unstable region, respectively shown as

Se
b and Ue

b, where:

Se
b ⊂ S and Ue

b ⊂ U (4.15)

figures/xieta4.eps
figures/xieta4(2).eps
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Sb ⊆ Se
b and Ub ⊆ Ue

b (4.16)

In other words, assuming a monotonic behavior and a specific order of the poly-

nomial, it is possible to extend the bounds from both sides of stable and unstable

regions. Given point A on the unstable bound (see Figure 4.2), we know that

G( ~xA) ≤ 0. Its value is also equal to a constant C, C = G( ~xA). Also we concluded

from Section 4.2 that given the order of a monotone LSE, we can find its extreme

responses in the form presented in Equation 4.17. ~xA = (x1A, . . . , xnA) is a vec-

tor and every element of this vector presents the value of one of its coordinates.

Therefore, i Equation 4.17 represents the dimension of the vector, while j repre-

sents the different extreme responses of the LSE which were addressed in Section

4.2. Therefore, n represents the dimension and m represents the number of dif-

ferent extreme responses; they are different with what was presented in Section

4.2.

ηij = gj(ξi), where i = 1, . . . , n and j = 1, . . . , m (4.17)

The next step is finding the possible extension of the bounds shown as ξ0
ij

|C| = gj(ξ0
ij), i = 1, . . . , n and j = 1, . . . , m (4.18)

Where

C = G(~xA) and ~xA ∈ U (4.19)

Then we can find the point, where the LSE, estimated to be zero from each curve

as:

ξ0
ij = g−1

j (ηij) = g−1
j (|C|) i = 1, . . . , n and j = 1, . . . , m (4.20)

And finally,

ξe
i = min{ξ0

ij, j = 1, . . . , m} (4.21)

As a result, xiA
′ = xiA + ξe

i presents the extended unstable bound. Therefore,

without implementing any uncertainty the lower bound is extended as Ue. This

process, can be also done for the stable bound in which the result will be in the

form of xBi
′ = xBi − ξe

i
′, where xB

′ suggests the extended bound of the stable

region and ξe ′ is obtained from a similar process of calculating ξe. However, if

no information of derivation is implemented, we expect to have ξe ′ = ξe. In

conclusion, ~xA = (x1A, . . . , xnA) which represents a point on the unstable bound

is transformed to ~xA
′ = (x′1A, . . . , x′nA), and ~xB = (x1B, . . . , xnB) which represents

a point on the stable bound is transformed to ~xB
′ = (x′1B, . . . , x′nB) without any

realization of the LSE.

4.4 Monte Carlo Algorithm

Here we describe the algorithm of improved dynamic bounds (IDB) assuming the

requirements of dynamic bounds (DB) are already fulfilled (reader may review
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Section 3.2.3). In this algorithm we refer to a two dimensional problem because

it is easier to illustrate and it has been already studied for the method of dynamic

bounds.

To begin, let us consider the ideas of the Monte Carlo algorithm by looking at

a 2-dimensional example. In Figure 4.1, a two-dimensional limit state equation

G(x1, x2) = 0 is depicted, as well as the contours of the joint probability density

function, f (x1, x2), of the two variables (X1, X2). The limit state function G(x1, x2)
is assumed to be monotonically increasing in both variables. This means that

G(x1, x2) < 0 for points below the LSE; we call this the unstable region as its

internal points correspond to the failure. For points above the LSE, G(x1, x2) > 0,

it is called the stable region.

A first random point, ~x(1) = (x
(1)
1 , x

(1)
2 ), is generated from the JPDF f . In

Figure 4.2, it is depicted by a black square labeled 1, and upon evaluation it is

found that G(x
(1)
1 , x

(1)
2 ) < 0, hence it leads to the failure and defines the unstable

region. From the monotonicity of G it is inferred that G(x1, x2) < 0 for all points

(x1, x2) in the quadrant to the left and below of (x
(1)
1 , x

(1)
2 ). In the next step, the

point (x
(2)
1 , x

(2)
2 ) is generated from f , it turns out that G(x

(2)
1 , x

(2)
2 ) > 0. So point 2

is in the stable region and all points the quadrant to the right and above of point 2

are stable as well.

This process continues; the result of a small number of iterations is shown

in Figure 4.2. The shaded regions constitute approximations to the stable and

unstable regions that can be used to obtain bounds on the probability of failure pf.

These regions are limited within the stable and unstable bounds. Therefore,

we keep the points of the bounds and leave the internal points. The result, how-

ever, is equivalent. Suppose two closest points on the unstable and stable bounds

named respectively as ~ub
(i) and ~sb

(j), where in a two dimensional example are

~ub
(i) = (u

(i)
b1 , u

(i)
b2 ) and ~sb

(j) = (s
(j)
b1 , s

(j)
b2 ). Then we implement the technique pre-

sented in Section 4.3 to get these points (bounds) extended to ~ub
(i)′ and ~sb

(j)′.
For illustration, we mention to the updating process of these points. As a result

of transformation to a one dimension and adjusting the local coordinates, we will

have A = (0, 0) and B = (c, d), where c = s
(j)
b1 − u

(i)
b1 and d = G(~s

(j)
b1 )− G(~u

(i)
b1 ). As

a result the value of ξe
1 can be calculated, and within the same process, the value

of ξe
2 can be calculated, where 1 and 2 refer to the dimensions. These values lead

toward the extension of the stable and unstable bounds as schematically shown

in Figure 4.2 by the points ~ub
(i)′ and ~sb

(j)′. Then this process needs to be done for

the other boundary points3.

3The reader should keep in mind that in practice the location of the LSE-curve is not known; it

only gradually becomes visible as it is being sandwiched between the increasingly more accurate
approximations to the stable and unstable regions. The corresponding dynamic upper and lower

bounds on pf become tighter as the number of generated points increases. Also note that for some
generated points it is not necessary to evaluate the limit state function, because from other points
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For the mathematical description we revert to dimension n. Define the stable

bound S and the unstable bound U for a monotonically increasing G(~x) by

Sb = {~x : G(~x) ≥ 0 | ∀x, y ∈ S, ∃xi < yi, i = 1, . . . , n}. (4.22)

Ub = {~x : G(~x) < 0 | ∀x, y ∈ U, ∃xi > yi, i = 1, . . . , n}. (4.23)

Equations 4.22 and 4.23 are equivalent to the definition of S and U presented

in Equation 3.2, and the difference is that the sets addressed here are only include

the value on the bounds.

Consider the k-th iteration of the Monte Carlo process. A number of points

on the stable bound, say, ~sb
(1), . . . , ~sb

(p) and a number of points on the unstable

bound ~ub
(1), . . . , ~ub

(q) have been stored. The current approximation to the stable

region S is the union of the p orthants (generalizing the quadrants in Figure 3.1)

Hi = {~x : ~x is more stable than ~sb
(i)}, i = 1, . . . , p. (4.24)

If~s (i) is more stable than ~sb
(j), for some i and j, its orthant Hi is completely con-

tained in Hj, and there would be no loss of information if~s (i) would be dropped

from the list. Similarly, the current approximation to the unstable region U is the

union of

Li = {~x : ~x is less stable than ~ub
(i)}, i = 1, . . . , q. (4.25)

From now on, it is assumed that only set of stable and unstable points located

on the bounds are retained during the simulation and Sbk and Ubk are the corre-

sponding approximations to S and U:

Sbk = ∪p
i=1Hi and Ubk = ∪q

i=1Li. (4.26)

Now, imagine the next random point ~X(k+1) is generated from f . There are three

possibilities. The first is: ~X(k+1) ∈ Sbk, that is, the point is located in a region that

is known to be part of the stable set. The second is: ~X(k+1) ∈ Ubk, that is, the point

is located in a region that is known to be part of the unstable set; the count of the

number of failures should be incremented. The third is: ~X(k+1) 6∈ Sbk ∪ Ubk, that

is, the point is located in the unqualified region between Sbk and Ubk; G(~X(k+1))
needs to be evaluated; but before the evaluation we extend the bounds and obtain

the extended bounds, Se
bk and Ue

bk;
~X(k+1) ∈ Se

bk, that is, the point is located in a

region that is known to be part of the stable set; ~X(k+1) ∈ Ue
bk, that is, the point

is located in a region that is known to be part of the unstable set; the count of

the number of failures should be incremented. The fourth is: ~X(k+1) 6∈ Se
bk ∪ Ue

bk,

that is, the point is still located in the unqualified region between Se
bk and Ue

bk;

G(~X(k+1)) needs to be evaluated; If it is positive, ~X(k+1) is added to the collection

of the points on the stable bound and this collection is checked for its minimality,

it can be determined whether the point is stable or unstable.
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dropping any superfluous points. If it is negative, ~X(k+1) is added to the collection

of the points on the unstable bound and a similar update is performed. Note

that the numbers p and q vary during the simulation and in fact depend on the

iteration number k.

Summarizing, the algorithm is as follows:

1. Determine Sb0 and Ub0. They could be empty sets or be determined from

the threshold points, as described. Set k = 0, nf = 0.

2. Increase k by 1 and generate ~X(k) from f . If ~X(k) ∈ Ubk−1, add 1 to nf

and update Ubk−1 to obtain Uk. If ~X(k) 6∈ Sbk−1 ∪ Ubk−1, calculate Se
bk−1

and Ue
bk−1; If ~X(k) ∈ Ue

b, add 1 to nf and update Ubk−1 by adding Ue
bk−1

to obtain Ubk; else if ~X(k) ∈ Se
b, update Sbk−1 by Se

bk−1 to obtain Sbk. If

~X(k) 6∈ Sbk−1 ∪ Se
b ∪ Ubk−1 ∪ Ue

b, evaluate G(~X(k)); if it is negative, add 1 to

nf and update Ubk−1 to obtain Ubk; otherwise, update Sbk−1 to obtain Sbk.

Repeat until k = N.

3. p̂f = nf/N is a simple Monte Carlo estimate for pf.

This estimate p̂f is as good as an ordinary Monte Carlo estimate based on N inde-

pendent samples 1[G(~X(1)) < 0],. . . ,1[G(~X(N)) < 0], but requires evaluation of

G in only a fraction of the samples. However, the simulation also yields an upper

and a lower bound on pf, as follows. Clearly, Ue
bN ⊂ U and Se

bN ⊂ S. So,

p̂e
u := P

(

~X ∈ Ue
bN

)

≤ pf and p̂e
s := P

(

~X ∈ Se
bN

)

≤ 1 − pf, (4.27)

where ~X is an independent draw from f . These imply the following bounds on pf:

p̂e
u ≤ pf ≤ 1 − p̂e

s. (4.28)

Therefore, the unqualified region has been shrank which can be presented as

ps
∆ = 1 − p̂e

u − p̂e
s. (4.29)

Where ps
∆

presents the shrank of unqualified region and this statement is valid.

ps
∆ ≤ p∆ (4.30)

4.5 Numerical example

4.5.1 One dimensional model

Here, we refer to the example of the impact of water waves on coastal struc-

tures which was described in Section 3.4 and presented in Equation 3.16. A one
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A comparison between DB and the other level III methods

IDB N 4 9 15 16 18 22

p̂f 0.04 0.047 0.0462 0.0466 0.0466 0.0466

V(p̂f) 14.5E-2 4.3E-2 1.44E-2 0.45E-2 0.14E-2 0.045E-2

DB N 9 16 22 27 33 36

p̂f 0.045 0.0497 0.0462 0.0464 0.0467 0.0466

V(p̂f) 14.5E-2 4.3E-2 1.44E-2 0.45E-2 0.14E-2 0.045E-2

MC N 1E+3 1E+4 1E+5 1E+6 1E+7 1E+8

p̂f 0.0487 0.0478 0.0462 0.0466 0.0466 0.0466

V(p̂f) 14.5E-2 4.3E-2 1.44E-2 0.45E-2 0.14E-2 0.045E-2

Table 4.1: A comparison between different level III methods: Monte Carlo (MC),

dynamic bounds (DB), Improved dynamic bounds (IDB).

dimensional limit state equation (LSE) of that example can be defined by Equa-

tion 4.31, where the velocity parameter is assumed to be normally distributed as

N(1.5, 0.45).
G(u) = 500000− 98280 × u2. (4.31)

It is clear that this limit state function is monotonically decreasing regarding its

variable (u), and it is a second order function. This assumption may be obtained

by experience or knowledge about an implicit limit state equation. Having this

knowledge, we compare the results of improved dynamic bounds (IDB), dynamic

bounds (DB), and Monte Carlo (MC) in Table 4.1. This shows that given more in-

formation over LSE, less calculation efforts needed. It is important to be reminded

that the information of derivatives still has not been applied to this comparison.

As a result, IDB is robust and can be used with a good efficiency and a high accu-

racy.

4.5.2 Two dimensional model

Here we refer to the two-dimensional limit state equation presented in Equation

3.17 as

G(ρ, u) = 500000− 94.50× ρ × u2. (4.32)

There are some extra information can be implemented into the reliability analysis.

Given, the linear relation of the ρ and second order relation of u, the method of

improved dynamic bounds can be implemented. The improved dynamic bounds

and some other Level III reliability methods are applied to the LSE (Equation

4.32), the results are given in Table 4.2. For each method there are several rows,

the first shows the number of evaluations of the LSE, the second the corresponding

estimate for pf, and the third shows the relative standard error, i.e., the standard

error divided by pf. The number of evaluations is varied, but the columns contain



38 Chapter 4. Improved Dynamic Bounds

A comparison between DB and the other level III methods

IDB 6 13 14 12 13

p̂f 0.0400 0.0456 0.0457 0.0463 0.0466

Rel. s.e. 0.1549 0.457E-1 3.44E-3

pf ≥ p̂e
u = 0.0432 0.0465 0.0466 0.0466 0.0466

pf ≤ 1 − p̂e
s = 0.0479 0.0467 0.0466 0.0466 0.0466

DB 27 77 203 598 1828 5556 17286

pf 0.0490 0.0471 0.0455 0.0468 0.0467 0.0466 0.0466

Rel. s.e. 13.93E-2 4.5E-2 1.45E-2 0.45E-2 0.14E-2 0.045E-2 0.014E-2

pf ≥ p̂u = 0.042 0.0451 0.0463 0.0466 0.0466 0.0466 0.0466

pf ≤ 1 − p̂s = 0.053 0.0490 0.0472 0.0469 0.0466 0.0466 0.0466

MC 1E+3 1E+4 1E+5 1E+6 1E+7 1E+8 1E+9

pf 0.038 0.0477 0.0462 0.0467 0.0467 0.0466 0.0466

Rel. s.e. 15.9E-2 4.5E-2 1.44E-2 0.45E-2 0.14E-2 0.045E-2 0.014E-2

NI 1E+3 1E+4 1E+5 1E+6 1E+7 1E+8 1E+9

pf 0.0429 0.0465 0.0466 0.0466 0.0466 0.0466 0.0466

IS 1E+2 1E+3 1E+4 1E+5 1E+6

pf 0.0412 0.0464 0.0467 0.0468 0.0466

Rel. s.e. 15.8E-2 4.64E-2 1.42E-2 0.45E-2 0.14E-2

IS-DB 12 55 136 271 959

pf 0.0425 0.0460 0.0469 0.0468 0.0467

Rel. s.e. 16.4E-2 4.58E-2 1.44E-2 0.64E-2 0.17E-2

Table 4.2: Comparison between level III methods: Improved dynamic bound

(IDB), dynamic bounds (DB), Monte Carlo (MC), numerical integration (NI), im-

portant sampling (IS), and DB coupled with IS (IS-DB). Rows marked pf contain

the estimates for the probability of failure. Rel. s.e. is the relative standard error.

The bottom two DB rows present p̂u and 1 − p̂s: certain (i.e., non-probabilistic)

bounds on pf. Bold numbers present the acceptable engineering level.

outcomes of approximately the same accuracy (except for the NI results, that are

matched with MC in terms of number of evaluations of the LSE). For the IDB and

DB methods the last two rows present the lower and upper bound from equa-

tion (3.7) (the reader is reminded that these bounds are not confidence bounds,

but hold with certainty).

Table 4.2 shows that the number of Monte Carlo simulations has been reduced

by the factor of 9 and 1E+4, which is considerable.

4.6 Conclusions

Dynamic bounds (DB) is a technique suggested for the reliability analysis of en-

gineering problems which have monotonic behavior with a limited number of
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influential variables. The DB method divides the range of a LSE into three parts of

stable, unstable, and unqualified. An attempt was made in this chapter to shrink

the size of the unqualified part, given the order of the LSE in respect to its vari-

ables. As a result, DB is improved by defining a lower bound for the response

surface in the unqualified region of the LSE on the base of the minimization pro-

cess. The improved dynamic bounds (IDB) presents more efficiency and accuracy

without implementing uncertainty into the model. IDB still can be coupled with

importance sampling technique, and more importantly the bounds can be stored

for the next series of simulations.
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5

Bayesian Monte Carlo

To reduce the cost of Monte Carlo (MC) simulations for time-consuming processes

(like Finite Elements), Bayesian Monte Carlo (BMC) is introduced in this chapter.

Applying this method, number of realizations in MC is reduced according to an

accepted tolerance. Besides, there is a possibility of thinking about priors. In

other words, different priors can be integrated into one model which can decrease

calculation efforts in MC simulations. This study tries to speed up the Monte Carlo

process by taking into account the information of neighboring points as a prior

knowledge about the problem. As a matter of fact, this information provides a

predictive tool for the next estimation; therefore, given a certain tolerance, the

number of calculations are dramatically reduced. The general methodology and

algorithm of the suggested approach are also presented in this chapter and further

details are presented in Appendixes.

5.1 Overview

Monte Carlo technique, widely applied in engineering fields, considers each sim-

ulation independent of the previous simulations. As a result, a number of tech-

niques have been developed to take into account the information of the previous

simulations and (as a result) reduce the cost of simulations. These improvements

are necessary for the simulation of a time-consuming process (like FE) indicated

for instance by Rajabalinejad et al. (2007a). These methods and their advan-

tages and disadvantages are briefly discussed in Chapter 2. Besides, the technique

of dynamic bounds (DB) is introduced in Chapter 3, and its improvement is de-

scribed in Chapter 4. This chapter presents a method to speed up the Monte Carlo

process by considering the assumption that the value of every point (pixel) can

be estimated by its neighboring pixels, given the position of the pixels and the

best possible estimation. This assumption can be implemented into the model

41
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by the Bayesian technique which is, in fact, based on the Bayesian interpolation

technique presented by Bretthorst (1992). The Bayesian interpolation assigns a

probability density function (PDF) to an arbitrary point, given an evenly spaced

grid. This PDF, then, can be used as a judgement tool. Therefore, given a tol-

erance we will be able to judge about the accuracy of the prediction for the next

simulation. The Bayesian Monte Carlo (BMC) still is based upon the interpolation,

but it is fully adapted with the Monte Carlo method. As a result, the information

of the neighborhoods are implemented into the model, and there is a possibility

for implementing of more priors.

This chapter needs a background of Bayesian material as well as Monte Carlo

methods. The concept of Bayesian approaches is very well described by Jaynes

(2003). An instructive reference for applying the Bayes’ Theorem into the practice

is presented by Sivia (1996). It is assumed that the readers have background of

the Monte Carlo method and further detailed of this method can be found in

Melchers (1999); Hammersley and Handscomb (1964).

5.2 Introduction

To address the problem we assume that there is a signal U which is to be esti-

mated at a number of discrete points. These discrete points will be called pixels,

presented by ui. These pixels present a vector of pixels u ≡ (u0, · · · , uv+1). There-

fore, there are totally v + 2 pixels. The first and last pixels, presented by u0 and

uv+1, are called boundary pixels and are treated separately. As a result, v presents

the number of interior pixels. The total number of observed data points is equal

to n which are distributed in arbitrary (or random) locations among the pixels.

Therefore, the maximum value of n is equal to v + 2 when there is an observed

data point for each pixel (n ≤ v + 2). The locations of the observed data points

are collected in a vector c, so this vector has n elements which are presented by ci

and i = 1, 2, · · · , n. The vector of observed data points is called d ≡ (d1, · · · , dn),
and its elements are presented by di. Figure 5.1 presents an illustration of the

internal and boundary pixels as well as data points. According to this figure, for

instance, c ≡ (1, v − 1, v + 2).

The univariate probability density function (PDF) for an arbitrary pixel, given

the data D and the informational context I, will be found by integrating out all

pixels. In this case the sum rule is applied and the product is integrated all over

the multivariate posterior pdf of all pixels of U except the required pixel uj.

P(uj|D, I) =
∫

P(U|D, I) . . . dui . . .
︸ ︷︷ ︸

i 6=j

(5.1)

Also, according to the Bayes’ rule we have:
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Figure 5.1: An illustration of the pixels which data points are assigned to.

P(U|D, I) =
P(D|U, I)P(U|I)

P(D|I) (5.2)

Where P(D|I) is a normalization constant. Therefore, combination of Equa-

tions 5.1 and 5.2 produces the following equation.

P(uj|D, I) ∝

∫

P(D|U, I)P(U|I) . . . dui . . .
︸ ︷︷ ︸

i 6=j

(5.3)

This equation presents needs to define P(D|U, I) and P(U|I) which are respec-

tively called likelihood function and the prior. The likelihood, or in this case more

appropriate the PDF of the data (D) conditional on the pixels (U), is constructed

by making the standard assumptions of noise. It is assumed that this noise has got

a zero mean value and a specific standard deviation. As a result, it is important to

define the prior on the base of the prior information we have.

5.3 The prior

There are some logical dependence among neighboring pixels and this expectation

is translated in the following model, f , for an arbitrary pixel ui. In this model, the

value of ui is estimated by its two neighbor points. Figure 5.2 clarifies this concept

where two neighbor points of pixel i are shown, and their positions are shown by

x. Given an arbitrary location in [xi−1 , xi+1], it is logical to assume that a closer

neighbor has more influence on the estimate than the other neighbor.

Therefore, δr,i and δl,i are two relative weights which respectively present the

influence of left and right neighbor points on the target pixel, and one gets δl,i +
δr,i = 1. As a result, the value of the pixel ui is estimated as

ûi = f (ui−1, ui+1) = ui−1.δr,i + ui+1.δl,i, (5.4)
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Figure 5.2: An illustration of the pixels which data points are assigned to.

where

δl,i =
xi − xi−1

xi+1 − xi−1
, and δr,i =

xi+1 − xi

xi+1 − xi−1
.

Having the model defined, the error ei also is implicitly defined by Equation 5.5.

ei = ui − ûi = ui − f (ui−1, ui+1) = ui − (ui−1.δr,i + ui+1.δl,i). (5.5)

The only thing we know about this error is that the error has a mean of zero

(the error is either positive or negative) with some unknown variance φ2
i . It means

that we assume that the standard deviation of our error is relevant to the distance

of neighbors, φi ∝ (xi+1 − xi−1). As a matter of fact, a closer neighbor points

to the pixel a smaller error for the estimation is expected. Using the principle of

Maximum Entropy Jaynes (2003), we find the well known Gaussian probability

density function of ei presented in Equation 5.6. φi in this equation stands for the

standard deviation of the pixel ui.

P(ei|φi) =
1√

2πφi

exp[− 1

2φ2
i

e2
i ]. (5.6)

Substituting Equation 5.5 into Equation 5.6 and making the appropriate change

of variable from ei to ui, the PDF of the pixel ui can be obtained by Equation 5.7.

P(ui |ui−1, ui+1, φi, I)
= 1√

2πφi
exp[− 1

2φ2
i

[ui − ui−1.δr,i − ui+1.δl,i]
2]. (5.7)

Assuming that there is no logical dependence between the errors e1, . . . , ev,

where v is the number of internal pixels, the multivariate PDF of all the errors is

a product of the univariate PDFs. Then, by making the change of variable from ei

to ui we find the following multivariate PDF for the pixels u1, . . . , uv.

P(u1, . . . , uv|u0, uv+1, φ1, . . . , φv, I)
∝ 1

(2π)v/2φ1 ...φv
exp[− ∑

v
i=1

1
2φ2

i

[ui − ui−1.δr,i − ui+1.δl,i]
2]. (5.8)
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To simplify our approach, we assume that the value of standard deviation or φ
is in direct relation with the relative distance of pixels. In other words, we assume

that the closer pixels we get, a smaller standard deviation is expected.

φi = δi
∆
× φ, 1 ≤ i ≤ v,

∆ = δ0 + δ1 + · · · + δv + δv+1,
δi = xi+1 − xi−1.

(5.9)

Also,

φ0 = δ0
∆
× φ, and δ0 = x1 − x0,

φv+1 = δv+1
∆

× φ, and δv+1 = xv+1 − xv.
(5.10)

Remark. It is important to attend to the difference between δi and δl,i or δr,i. δi

refers to the absolute distance while the δl,i and δr,i refer to a relative weight. We

substitute Equation 5.9 to 5.8 and we get the following equation:

P(u1, . . . , uv|u0, uv+1, φ, I)

∝ 1
(2π)v/2Aφv exp[− ∆2

2φ2 ∑
v
i=1

1
δ2

i

[ui − ui−1.δr,i − ui+1.δl,i]
2],

where A = δ1...δv

(δ1+···+δv)v .

(5.11)

The boundary pixels are treated separately. In fact, these two pixels are as-

signed to the first and last position and presented as u0 = v1 and uv+1 = vv. As a

result of using the principle of Maximum Entropy, the PDF of the boundary pixel

u0 is obtained in Equation 5.12. And a similar equation can be established for the

other boundary pixel uv+1.

P(u0|u1, φ0, I)
= 1√

2πφ0
exp[− 1

2φ2
0
[u0 − u1]

2]

= ∆√
2πφδ0

exp[− ∆2

2(φδ0)2 [u1 − u0]
2]

= ∆√
2πφδ0

exp[− ∆2

2φ2 [
u1−u0

δ0
]2].

(5.12)

And
P(uv+1|uv, φv+1, I)

= 1√
2πφv+1

exp[− 1
2φ2

v+1
[uv+1 − uv]2]

= ∆√
2πφδv+1

exp[− ∆2

2(φδv+1)2 [uv+1 − uv]
2]

= ∆√
2πφδv+1

exp[− ∆2

2φ2 [
uv+1−uv

δv+1
]2].

(5.13)

To combine these priors, the product rule can be used to combining Equations

5.8, 5.12, and 5.13 by applying of Bayes’ Theorem,

P(u0, u1, . . . , uv+1|φ, I)
∝ P(u0|u1, φ, I)P(uv+1|uv, φ, I)P(u1, . . . , uv|u0, uv+1, φ, I).

(5.14)
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The next equation is obtained which is written in a matrix form, where u is vector

of pixel positions, and R is presented by Equation 5.16.

P(u0, u1, . . . , uv+1|φ, I)

∝ 1
(2π)(v+2)/2A′φv+2 exp[− 1

2φ2

v+1

∑
k=0

v+1

∑
l=0

Rklukul ],
(5.15)

where

A′ =
δ0.δ1 . . . δv.δv+1

(δ1 + · · · + δv)v+2
.

We have derived the above equation which provides the joint probability den-

sity function (JPDF) for the pixels u0, . . . , uv+1 by implementing the prior based

upon the weighted neighbors presented in Equation 5.4.

Remark. If φ = 0, we get to the conclusion that our model (Equation 5.4) holds

exactly. So setting φ = 0 produces an extremely informative prior which deter-

mines the values of the pixels. On the other hand, if φ → inf then the prior

relaxes to an extremely uninformative distribution which lets the values of the

pixels totally free. So in a sense φ ’regulates’ the freedom allowed to the pixels

u0, . . . , uv+1.

5.4 The likelihood

Apart from our model and prior, we also have n non-overlapping data points,

n ≤ v + 2. These data points can be assigned arbitrarily to any pixel ui where

i ∈ c, where vector c described in Section 5.2. The values of c correspond with

the location of the observed data regarding the pixel numbers; c has N elements.

The error of the model at the location of any observed data point is defined as:

ei = ui − di, and i ∈ c. (5.16)

Assuming that this error has a mean of zero (the error is either positive or neg-

ative) with some unknown variance σ2
i and using the principle of Maximum En-

tropy we find that this error (Equation 5.16) has the following probability density

function:

P(ei|σi) =
1√

2πσi

exp[− 1

2σ2
i

e2
i ]. (5.17)

Substituting 5.16 into 5.17 and making a change of variable from the error ei to

the data di, the likelihood function can be obtained according to Equation 5.18.

P(di|ui, σi) =
1√

2πσi

exp[− 1

2σ2
i

(di − ui)
2], and i ∈ c. (5.18)
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Again by assuming logical independence between the errors and making the ap-

propriate substitutions and changes of variables, the following likelihood function

can be obtained.

P(d1, . . . , dn|u1, . . . , un, σ1, . . . , σn)

∝ 1
(2π)n/2σ1...σn

exp[−
v+1

∑
i=0, i∈c

1
2σ2

i

(di − ui)
2].

(5.19)

In Equation 5.19, σi presents the standard deviation of the error. Assuming that

the error of the likelihood is proportional to the error of the prior, it will conclude

that

σi =
δi

∆
× σ, 1 ≤ i ≤ v, (5.20)

where, ∆ = δ0 + δ1 + · · · + δv + δv+1, and δi = xi+1 − xi−1. Therefore, Equation

5.19 can be written as

P(d1, . . . , dn|u1, . . . , un, σ)

∝ 1
(2π)n/2Bσn exp[− ∆2

2σ2

v+1

∑
i=0

(di−zui)
δ2

i

2
],

(5.21)

where z is

zi =

{
1 if di 6= 0,

0 elsewhere.
(5.22)

and B is

B =
δ1 . . . δn

(δ1 + · · · + δv)n
.

5.5 The posterior

The posterior can be obtained by using the product rule,

P(U|D, σ, φ, I) ∝ P(U|φ, I)P(D|σ, U). (5.23)

As a result, the multiplication of the prior, Equation 5.15, and the likelihood,

Equation 5.21, leads to a function which is proportional to the posterior PDF of

all the pixels.

P(u0, . . . , uv+1|D, σ, φ)

∝ 1

(2π)
n+v+2

2 A′Bφv+2σn
exp

[

− 1
2φ2

v+1

∑
k=0

v+1

∑
l=0

Rklukul − ∆2

2σ2

v+1

∑
i=0

(di−zui)
δ2

i

2
]

.
(5.24)

To get the PDF of a target pixel, uj, Equation 5.24 needs to be integrated over all

pixels except the target pixel which results

P(uj|D, σ, ǫ, I) ∝ 1

(2π)
n+v+2

2 A′Bφv+2σn

×
∫

exp

[

− 1
2φ2

v+1

∑
k=0

v+1

∑
l=0

Rklukul − ∆2

2σ2

v+1

∑
i=0

(di−ziui)

δ2
i

2
]

du0 . . . duv+1
︸ ︷︷ ︸

exceptduj

. (5.25)
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5.5.1 Regularizer, ǫ

The model error regarding the prior information was described with a parame-

ter φ, and the error of the data was described by σ. A parameter ǫ, called the

regularizer, can be defined as

ǫ =
σ

φ
. (5.26)

There are two extremes for the value of the regularizer. If the regularizer ap-

proaches to a large value, ǫ → inf, then the error of the prior information is much

smaller than the error of the data. However, if its value approaches to a very small

value, ǫ → 0, the error of the data is much smaller than the error of the model;

therefore, the data is more accurate and will dominate the analysis.

As a result of Equation 5.26, for the transformation holds that

dǫ =
σ

φ2
dφ. (5.27)

Taking the advantage of the definition of an Equation 5.25 turns to the following

form:

P(uj|D, σ, ǫ, I)

∝ ǫv+2

(2π)
n+v+2

2 A′Bσn+v+2

×
∫

exp

[

− ǫ2

2σ2

v+1

∑
k=0

v+1

∑
l=0

Rklukul − ∆2

2σ2

v+1

∑
i=0

(di−zui)
δ2

i

2
]

du0 . . . duv+1
︸ ︷︷ ︸

exceptduj

.
(5.28)

Where constant parameters like π, A′ and B can be dropped. Then, Equation 5.28

can be rewritten as

P(uj|D, σ, ǫ, I)

∝ ǫv+2

σn+v+2

∫
exp

[

− 1
2σ2 [Nd̄2 +

v+1

∑
k=0

v+1

∑
l=0

gklukul − 2∆2
v+1

∑
i=0

dizui

δ2
i

]

]

du0 . . . duv+1
︸ ︷︷ ︸

exceptduj

.

(5.29)

where d̄2 is the mean-square data value as

d̄2 ≡ 1

N

N

∑
i=1

(
∆

δi
)2d2

i . (5.30)

and the gkl, called as the integration matrix, is

gkl ≡ ǫ2Rkl + Skl . (5.31)

where the Skl is a diagonal matrix with entry 1 for pixels which data points are

assigned to them and 0 everywhere else.

Skl =

{
∆2

δ2
k

if k = l and data point is assigned to the pixel uk,

0 elsewhere.
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For example, if d = [d1, 0, 0, d2, 0, d3, 0]T then the Skl is

Skl =
















∆2

δ2
1

0 0 0 0 0 0

0 0 0 0 0 0 0
0 0 0 0 0 0 0

0 0 0 ∆2

δ2
4

0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 ∆2

δ2
6

0

0 0 0 0 0 0 0
















.

Since there is no integration over uj it behaves like a constant. It can, as a

result, be separated from the other variables as

P(uj|D, σ, ǫ, I)

∝ ǫv+2

σn+v+2

∫
exp

[

−
Nd̄2−2djuj(

∆
δj

)2+gjju
2
j

2σ2

]

× exp






v+1

∑
k=0
k 6=j

v+1

∑
l=0
l 6=j

gklukul − 2
v+1

∑
i=0
i 6=j

(diz(
∆
δi
)2 − gjjuj)ui




 du0 . . . duv+1

︸ ︷︷ ︸

except duj

.

(5.32)

The integral may be done by the following change of variables:

Ak =
√

λ′
k

v+1

∑
i=0
i 6=j

uieki (k 6= j), (5.33)

uk =
v+1

∑
i=0
i 6=j

Aieik
√

λ′
i

(k 6= j), (5.34)

and λ′
i is the ith eigenvalue of the jth cofactor1 of the interaction matrix (the

g matrix), presented in Equation 5.31, and eik is the kth component of the ith

eigenvalue. Also the integration variables have the property that

v+1

∑
k=0
k 6=j

gkleik = λ′
ieil (5.35)

v+1

∑
k=0
k 6=j

elkeik = δli (5.36)

1 The cofactor of a matrix of rank v + 2 is a matrix of rank v + 1, and it is formed by deleting
the jth row and column of the matrix.
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Where δli is the Kronecker delta function

dA0 · · · dAj−1dAj−1 · · · dAv+1
√

λ′
0 · · · λ′

j−1λ′
j+1 · · · λ′

v+1

= du0 · · · duj−1duj+1 · · · duv+1 (5.37)

Making the change of variables and introducing a new quantity hl(uj)

hl(uj) =
1

√

λ′
l

v

∑
i=0
i 6=j

[diz(
∆

δi
)2 − gijuj]eli (l 6= j) (5.38)

one obtains

P(uj|D, σ, ǫ, I)

∝ ǫv+2

σn+v+2 exp

[

−
Nd̄2−2djuj(

∆
δj

)2z+gjju
2
j −h(uj)·h(uj)

2σ2

]

×
∫

exp




− 1

2σ2

v+1

∑
i=0
i 6=j

(Ai − hi(uj))
2




 .

(5.39)

where

hl(uj) · hl(uj) =
v+1

∑
i=0
i 6=j

hl(uj)
2. (5.40)

Evaluating the v + 1 integrals gives a factor of σv+1, and one obtains

P(uj|D, σ, ǫ, I) ∝ ǫv+2

σn+1 exp

[

−
Nd̄2−2djuj(

∆
δj

)2z+gjju
2
j −h(uj)·h(uj)

2σ2

]

.
(5.41)

Which is, in fact, equal to

P(uj|D, σ, ǫ, I) ∝ exp

[
2djuj(

∆
δj

)2z−gjju
2
j +h(uj)·h(uj)

2σ2

]

.
(5.42)

5.6 Eliminating σ

Given the fact that most of the times neither value of σ nor ǫ are known, they are

treated as nuisance parameters. They need to be integrated out in order to get a

posterior which is not dependent on them

P(uj|D, ǫ, I) =
∫

P(uj, σ|D, ǫ, I) dσ. (5.43)
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The integrand may be factored to obtain

P(uj, σ|D, ǫ, I) = P(uj, σ|ǫ, I) P(D|uj, ǫ, I)
= P(uj|I) P(σ|I) P(D|uj , σ, ǫ, I)
= P(σ|I) P(uj|D, σ, ǫ, I) .

(5.44)

Assuming that the prior probability, P(uj, σ|ǫ, I), is independent of the ǫ, and

that the P(uj, σ|I) = P(uj|I) · P(σ|I) presents Equation 5.43 in the form of

P(uj|D, ǫ, I) =
∫

P(σ|I) P(uj|D, σ, ǫ, I) dσ. (5.45)

P(uj|D, ǫ, I) is the prior probability for the variance, and the second part of

the equation above is proportional to Equation 5.25. Having no assumption over

the σ, a Jeffreys prior2 1
σ is assigned to obtain

P(uj|D, ǫ, I) =
∞∫

0

dσP(uj|D, ǫ, I)

=
∞∫

0

dσσ−(N+1) exp

[

−
Nd̄2−2djuj(

∆
δj

)2z+gjju
2
j −h(uj)·h(uj)

2σ2

]

.

(5.46)

This leads to

P(uj|D, ǫ, I) =



1 −
2djuj(

∆
δj
)2z − gjju

2
j + h(uj) · h(uj)

Nd̄2





− N
2

. (5.47)

5.6.1 Estimation of the regularizer ǫ

We would like to integrate out the parameter ǫ and get a closed form solution

for it. However, the formula is very nonlinear. Therefore, an attempt is made

to present the best estimation of this parameter. The effect of the value of ǫ is

discussed in Section 5.5.1, so it is important to assign a reasonable value to it. A

good estimate of the ǫ, in fact, leads to a reasonable result. Otherwise, the effect

of prior or likelihood on the posterior is neglected. Using the sum rule leads to

P(ǫ|D, I) =
∫

du0 · · ·duv+1dσ P(ǫ, σ, u0, · · · , uv+1|D, I). (5.48)

The integrand can be factored and written as

P(ǫ|D, I) =
∫

du0 · · ·duv+1dσ P(ǫ, σ|I)P(u0 , · · · , uv+1|D, I, ǫ, σ). (5.49)

2It is an uninformative prior.
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P(ǫ, σ|I) is the joint probability density function for ǫ and σ. Besides,

P(u0, · · · , uv+1|D, I, ǫ, σ)

can be written as the multiplication of the prior and likelihood, respectively pre-

sented in Equation 5.15 and 5.21.

P(ǫ|D, I) =
∫

du0 · · ·duv+1dσP(ǫ|I)P(σ|I)
× P(u0, · · · , uv+1|I, ǫ, σ)P(D|u0 , · · · , uv+1, I, ǫ, σ).

(5.50)

Substitution of the prior and likelihood in to the Equation 5.50, and working

out the formula in the same process that was done for the posterior leads to

P(ǫ|D, I) ∝
∫

du0 · · ·duv+1[λ0 · · · λv1]
1
2 σ−(v+N+3)ǫv+1

× exp

[

− ǫ2

2σ2

v+1

∑
k=0

v+1

∑
l=0

Rklukul

]

× exp

[

− ∆2

2σ2

v+1

∑
k=0

[di−zui]
2

δ2
i

]

.

(5.51)

The ǫ is implemented into R matrix. Therefore, its eigenvalues can not be

considered as a constant, and they need to be included in the equation. Equation

5.51 is extended in the same process that Equation 5.25 was extended to obtain

P(ǫ|D, I) ∝
∫

du0 · · ·duv+1[λ0 · · · λv1]
1
2 σ−(v+N+3)ǫv+1

× exp

[

− 1
2σ2

[

Nd̄2 − 2
v+1

∑
i=0

diuiz(
∆2

δ2
i

)+
v+1

∑
k=0

v+1

∑
l=0

gklukul

]]

.
(5.52)

After integrating of integrals, the posterior probability for ǫ which is indepen-

dent of the pixel values is given by

P(ǫ|D, I) =
∫

dσ
(

λ0···λv1
λ′

0···λ′
v1

) 1
2

σ−(v+N+3)ǫv+1

× exp
[

−Nd̄2−h(ǫ)·h(ǫ)
2σ2

]

.
(5.53)

Where

hl(ǫ) ≡ 1
√

λ′
l

v+1

∑
i=0
i 6=j

di(
∆

δi
)2zeli, (5.54)

hl(ǫ) · hl(ǫ) ≡
v+1

∑
i=0

hi(ǫ)2, (5.55)

{λ0 · · · λv+1} are the eigenvalues of the Rkl matrix, which was introduced in

Equation 5.16 and
{

λ′
0 · · · λ′

v+1

}
and eli are the eignevalues and eigenvectors of

the interaction matrix, gkl, introduced in Equation 5.31. As a result of the same

process which was done on Equation 5.47, one obtains

P(ǫ|D, I) ∝

(
λ0 · · · λv1

λ′
0 · · · λ′

v1

) 1
2

ǫv+1

[

1 − h(ǫ) · h(ǫ)

Nd̄2

]− N
2

. (5.56)
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5.7 Algorithm

Here the algorithm is described for the Bayesian Monte Carlo (BMC). To begin,

let us consider the ideas of the Monte Carlo algorithm by looking at a one dimen-

sional example. Consider a one-dimensional limit state equation G(x) = 0 with

the probability density function fX(x) of the variable X.

The first and second random points, ~x(1) = x(1) and ~x(2) = x(2), are generated

from the PDF fX. Without any loss of the generality, we assume that x(1) < x(2).

This comes from the sorting requirement. Then, we assign pixels u1 and u2 to their

positions. The limit state equation (LSE) needs to be evaluated for these pixels

(positions); the calculated value of these pixels are called data points named as

d1 and d2. Then, the third random point, named as x(3), is generated. This newly

generated random number is called a target pixel3.

This point, or the target pixel, may have three positions which are x(3) < x(1),

x(1) < x(3) < x(2) or x(3) > x(2). Based upon the position of the target pixel

among the other pixels, we rename all the pixels and data points. Again without

any loss of the generality we assume the target pixel is located between u1 and u2.

Therefore the target pixel is now named as u2, while u1 is still u1 and the previous

u2 (which was related to x(2)) is named as u3. Therefore, the related data points

will be respectively named as d1 and d3. Then, according to the presented formula

in Equation 5.56 we need to estimate the best value of the regularizer based on

our information over the model and data. Given the value of the regularizer, ǫ,

we can estimate the PDF of the the target pixel, uj = u2 by Equation 5.42. In this

stage of the process, a Cauchy type of the PDF is expected in which the mean value

of the target pixel can be estimated but the second moment is infinity. Assuming

that the estimated accuracy for the target pixel is not enough, we proceed to

further simulations in the same process.

The reader should keep in mind that in practice the location of the LSE-curve

is not known; it only gradually becomes visible as it is interpolate or extrapo-

late based upon the prior and data information and obtains the increasingly more

accurate approximations to the value of the target pixel. The corresponding prob-

ability density function (PDF) becomes tighter as the number of generated points

increases. Also note that for some generated points it is not necessary to evaluate

the limit state function, because from their PDF it can be determined whether the

point is stable or unstable.

Summarizing, the algorithm is as follows:

1. In the Monte Carlo process, a random number is generated from the proba-

bility density function (PDF) of the variable X, fX, and according to its value

a pixel is defined, this pixel is called the target pixel.

2. If there are neighbors for the target pixel, we estimate the value of the target

3The target pixel is presented as uj in this chapter.
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pixel; otherwise, we back to the previous step to get more neighbors which

data point has been assigned to them.

3. Given the neighbor pixels and the assumed model, the PDF of the current

pixel (we assume uj) is calculated by Equation 5.58.

4. Having the PDF of uj and according to the accepted tolerance criterion, it is

decided whether there is a need to calculate the limit state equation for the

jth point or the accuracy is enough. In this case, if the confidence interval is

narrow enough, we estimate its value and proceed our simulation by com-

ing back to the first step. Otherwise, we calculate the value of limit state

equation (LSE) for this point.

Repeat until the Monte Carlo requirements are obtained.

5. p̂f = nf/N is a simple Monte Carlo estimate for pf.

This estimate p̂f is as good as an ordinary Monte Carlo estimate based on N inde-

pendent samples 1[G(~X(1)) < 0],. . . ,1[G(~X(N)) < 0], but requires evaluation of G
in only a fraction of the samples.

5.8 Numerical example

Here, we refer again to the break water model presented in Section 3.4 and Equa-

tion 3.16. The one dimensional limit state equation (LSE) of this model can be

defined by Equation 5.57, where the velocity parameter is assumed to be normally

distributed as N(1.5, 0.45).

G(u) = 5 − 0.98280× u2. (5.57)

Without of loosing generality of the problem, we assume that there are two

data points are generated from the normal distribution function of N(1.5, 0.45)
where the mean value of the PDF is 1.5 and its standard deviation is 0.45. These

data points are u1 = 0.15 and u3 = 2.85. The values of limit state equation for

these two points are G(u1) = 4.978 and G(u3) = −2.983. We assume that the

randomly generated pixel or the target pixel, uj is in u2 = 2.25. This situation, is

graphically presented in Figure 5.3.

Before we continue the simulation process, we would like to present the prob-

able values of uj with the suggested model. Therefore, we need to use Equation

5.58 in order to get the required PDF. Nevertheless, this equation contains σ and

φ. As a matter of fact, σ can be integrated out of the equation, but we need to

estimate a value for the φ. In this case, we define ǫ = 1
φ which is called regular-

izer. Then we can get the PDF of our regularizer to find its optimal value which

leads to the most narrow PDF. The most probable value of ǫ is estimated to be
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d1 = 4.978

b

u1

u1 = 0.15

uj

d3 = −2.983

u3

u3 = 2.85

b

Figure 5.3: An illustration of the pixels which data points are assigned to.

2.6 as suggested by Rajabalinejad et al. (2008a) and we use this value during

the rest of this work. As a result, Equation 5.58 presents the PDF of the target

pixel, uj = 2.25 given two data points: d1 and d3 as shown in Rajabalinejad et al.

(2008a).
P(uj|d1, d3)

∝ 0.3126 109

0.5897 1010+0.5265 1010 uj+0.1339 1010 uj
2

The PDF of uj given d1 and d3 is depicted in Figure 5.4. This figure is, in

fact, a plot of Equation 5.58. The mean value or the most probable value of this

PDF is -1.97. Besides, the 95% confidence interval by assuming a symmetrical

distribution leads to the confidence interval of [-11.28, 7.35]. This interval is

obtained by solving the equation which defines the integration of a symmetrical

area around mean value should be equal to 0.95. As presented in the figure, it is

a wide PDF and its tails are more informative than the Gaussian.

5.8.1 Comparison between linear interpolation and Bayesian

interpolation

To clarify the advantage of the Bayesian Monte Carlo comparing with the linear

interpolation, we consider two data points. Given just two data points in a linear

interpolation, there is no other way than assuming a linear relationship which

leads toward the value of -1.21 for the target pixel while there is no estimation

of the uncertainty. But the Bayesian Monte Carlo technique enables us to get a

criterion for the uncertainty of the estimated value of each pixel as depicted in

Figure 5.4. Now, the distinction between two methods is obvious; a judgment

tool is obtained by the Bayesian Monte Carlo.

This comparison is illustrated in Figure 5.5 for the LSE presented in Section

5.8. In this figure there are two data points called A and B. These two points are

the only information which provide point e using a linear interpolation for the

target pixel (u=2.25), where e=-1.21. This is not close to real value of the limit
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Figure 5.4: This figure presents the probability density function (PDF) of the tar-

get pixel (uj) where u = 2.25 given 2 measured data points: d1 and d3.

figures/p_uj_210_given_2_points.ps
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state function g=0.0246. Nevertheless, there is no information over the certainty

of the estimated point e from the interpolation. On the other hand, point f is

the mean value of the PDF calculated by the Bayesian technique (f=-1.97). The

uncertainty is shown by its PDF. Having a look at the presented PDF, a rather wide

PDF can be seen; and both of positive and negative values are expected for this

pixel.

The difference of the results of linear and Bayesian interpolation at this case

is because of the value of the regularizer(ǫ). The effect of epsilon (or φ which

is inversely related to it) was previously described. In fact, we can have two

extreme situations when we consider two extreme values for Φ. These extreme

values are 0 and infinity. In the first case we just stick to our data values and

in the second case we just consider our model assumption and leave the data

information. Therefore, the difference between e and f should be related to the

value of regularizer.

5.8.2 Change of the PDF in a certain pixel

From now on we start the Monte Carlo simulation by generating random num-

bers from N(1.5,0.45). However, before we run the limit state equation for each

random number which is assigned to a new target pixel uj, we check if it is nec-

essary or its value can be assigned without any realization of the LSE regarding

the accepted tolerance. To investigate the change of the accuracy during the sim-

ulation, we monitor a certain random pixel to clarify the change of its PDF during

the calculations. This helps to clearly understand the concept of Bayesian Monte

Carlo. The pixel which is correlated to the u = 1.575 is considered as a target

pixel and is monitored during the simulation in order to observe the change of its

PDF given different number of data points. This, however, is not fully in corre-

spondence with the suggested algorithm in Section 5.7, and it is presented for the

clarification purpose. The value of the regularizer is also considered to be ǫ = 2.6
as it is suggested by Rajabalinejad et al. (2008a).

P(uj|4 data points)

After 4 realizations of the LSE (or getting 4 random data points) which are as-

signed to their location, the calculated PDF of the target pixel, uj, for the location

u = 1.575 is calculated as

P(uj|d1, d2, d3, d5)

∝ 1.010906880×10122

(2.187557533×1060−1.266735392×1060 uj+4.165036151×1059 uj2)
2 , (5.58)

where the random pixels and their correlated data points are presented in Table

5.1.
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Figure 5.5: A comparison between the linear interpolation and the Bayesian

Monte Carlo for the target pixel (u = 2.25), given 2 measured data points: d1

and d3. The exact value of the function (Equation 5.57) is depicted by dashed

line.

pixel positions data points

u1 0.1500 d1 4.9779

u2 0.7505 d2 4.4465

u3 1.5564 d3 2.6193

uj = u4 1.5750

u5 2.2500 d5 0.0246

Table 5.1: Given 4 random data points, the PDF of uj = u4 is presented in Equa-

tion 5.58.

figures/comparison_linear_bayesian_m.eps


60 Chapter 5. Bayesian Monte Carlo
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Figure 5.6: This figure presents the probability density function (PDF) of the tar-

get pixel uj given 4 measured data points given in random locations.

Equation 5.58 is also depicted in Figure 5.6. The mean value of this PDF is

1.5207 , and the 95% accuracy by assuming a symmetrical distribution leads to

the interval of [-1.68 4.72].

P(uj|10 data points)

Since we are not satisfied with the calculated accuracy by 4 data points, we con-

tinue to generate more random data points. Figure 5.7 presents the PDF of the

target pixel uj having 10 calculated data points. The randomly generated pixels

and the correlated data points are presented in Table 5.2. The PDF is presented

in Equation 5.59. The mean value of this PDF is 2.5637, and the 95% accuracy by

assuming a symmetrical distribution leads to the values in the interval of [2.413,

2.713]. This shows that by implementing more data points, a narrower PDF is

obtained. Since this interval is small enough, we might assume that we have got

figures/4DP-BMC.eps
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pixel positions data points

u1 0.1500 d1 4.9779

u2 0.7505 d2 4.4465

u3 0.9841 d3 4.0482

u4 1.4831 d4 2.8383

u5 1.5564 d5 2.6193

uj = u6 1.5750

u7 1.5786 d7 2.5509

u8 1.6473 d8 2.3331

u9 2.0351 d9 0.9295

u10 2.0359 d10 0.9264

u11 2.2500 d11 0.0246

Table 5.2: Given 10 random data points, the PDF of uj = u6 is presented in

Equation 5.59.

the enough accuracy.

P(uj|d1, . . . , d5, d7, . . . , d11)

∝ 2.517788410×10302

(2.540061290×1060−1.970352850×1060 uj+3.842724004×1059 uj2)
5 . (5.59)

where the random pixels and correlated data points are

P(uj|more data points)

In the simulation process, we may continue calculations until we obtain the re-

quired accuracy. In the process of Bayesian Monte Carlo, given more data points

is equal to a higher accuracy. This is shown in Table 5.3 in which the calculated

mean value and the 95% confidence interval are shown given different number of

data points. This table shows that from 20 data points, the mean value with two

digits accuracy does not change. The 95% confidence interval, however, gets to

the length of 0.015 if 200 data points are given.

The mean values and confidence intervals are obtained from Equation 5.42

and in the same form as presented in Equation 5.58 and Equation 5.59. The

calculated PDFs given different data points are

P(uj|20 data points)

∝ 1.796652634×10618

(6.063151530×1060−4.697890134×1060 uj+9.163607020×1059 uj2)
10 . (5.60)

P(uj|50 data points)

∝ 6.259047446×101546

(7.086530901×1059−5.525452842×1059 uj+1.078255115×1059 uj2)
25 . (5.61)
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Figure 5.7: This figure presents the probability density function (PDF) of the uj

given 10 random data points.

Data points mean value 95% interval

20 2.5633 2.4583 2.6683

50 2.5622 2.5375 2.5869

80 2.5621 2.5420 2.5822

120 2.5620 2.5473 2.5767

160 2.5620 2.5495 2.5745

200 2.5620 2.5541 2.5699

Table 5.3: A comparison between the calculated accuracy and 95% confidence

interval for a certain target pixel (u=1.575 in Equation 5.57), given different

number of data points.

figures/10DP-BMC.eps
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P(uj|80 data points)

∝ 8.432112281×102487

(8.584336472×1059−6.692751222×1059 uj+1.306095943×1059 uj2)
40 . (5.62)

P(uj|120 data points)

∝ 7.302223585×103801

(2.111872960×1060−1.647021045×1060 uj+3.214289667×1059 uj2)
60 . (5.63)

P(uj|160 data points)

∝ 1.401727467×105058

(1.111650541×1060−8.670298560×1059 uj+1.692092777×1059 uj2)
80 . (5.64)

P(uj|200 data points)

∝ 3.917096557×106335

(9.942829468×1059−7.758149247×1059 uj+1.514077898×1059 uj2)
100 . (5.65)

Figure 5.8 presents the probability density functions for different data points

as presented in Equations 5.60 to 5.65.

5.9 Bayesian Monte Carlo

In fact, the number of simulations in the Monte Carlo technique depends on sev-

eral factors, and the tolerance is the most important one. In order to get a re-

quired accuracy, random data points are implemented into the model. As a result,

a higher number of random pixels lead to a higher accuracy. In other words, to

get more precise results, higher number of data points should be implemented

into the model.

It is useful to compare the calculated PDFs for a certain pixel during the simu-

lation process as was obtained in Section 5.8.2. In this case, Figure 5.9 provides

a comparison among the different PDFs with a fixed scale. Figure 5.9(a) presents

the PDF of the target pixel when there are just 4 data points presented. Figure

5.9(b) presents the PDF of the same target pixel when there are 10 data points ran-

domly generated and assigned to the related pixels. Figure 5.9(c) again presents

the PDF of the same pixel where the information of 20 pixels are implemented.

As a result of further data points, a narrower PDF is obtained till Figure 5.9(h) in

which 200 data points are implemented. It is obvious that as far as the simulation

is in progress and more data points are implemented, more precise estimation of

a target pixel is possible.

Therefore, the presented example clarifies the whole process of the Bayesian

Monte Carlo technique. In this study, an attempt is made to get the prior infor-

mation of the model incorporated to the current level of the analysis. This is a

step forward in Monte Carlo simulations. In fact, the R in Equation 5.15 pro-

vides a link between the information of each pixel and its neighborhood. In other

words, information of each point passes through this link and effect the others.

Besides, this approach provides a nice tool to get the other priors incorporated to
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Figure 5.8: This figure shows the probability density function which is assigned

to the target pixel (uj) given different number of data points. In Figure(a) Just

the information of 20 data points are considered while in figure b, c, d, e and

f the information of 20, 50, 80, 120, 160 and 200 data points are considered,

respectively.
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Figure 5.9: This figure shows the probability density function which is assigned to

the pixel uj = 1.575 given different number of data points. In Figure(a) Just the

information of 4 data points are considered while in figure b, c, d, e, f, g and h,

the information of 10, 20, 50, 80, 120, 160 and 200 data points are considered,

respectively.
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the Monte Carlo simulations. For instance, the dynamic bounds method 3 assumes

some other prior information which can be implemented in this approach.

5.9.1 The reduced number of simulations

The reduced number of simulations using the Bayesian Monte Carlo technique

depends on a few parameters. It is more importantly the tolerance which dictates

the minimum number of the required data points. However, it is important in

the Monte carlo process to have a judgment if the model fails or not fails. If we

just consider the failure or not failure for a certain target pixel, presented in the

example, just 10 realizations are enough given the fact that 95% interval lies in

the positive axis as presented in Section 5.8.2. If we consider further parameters,

however, we need more data points. For instance, for getting a two fixed digits

of the mean value, the required data points for a random target pixel is just 20

realizations of the limit state equation according to Table 5.3. If the minimum

length of 95% interval should be less than 0.05, then still we need to take into

account 50 data points as presented in Table 5.3. This interval still can be reduced

to the length of 0.015 given 200 data points. Therefore, the real number of the

realization of the LSE is depended on the tolerance and the selected approach for

the reliability analysis.

5.10 The Matrix form

The matrix form of the prior and likelihood are presented in the appendixes. Ap-

pendix A presents the derivation of the prior in the matrix form. Appendix B

shows the same process for the likelihood. The outcome of an approach in the

matrix form provides an easier formulation of the whole process.

5.11 Conclusion

The suggested procedure can speed up the Monte Carlo simulations integrated

with finite elements or the other highly complicated and time consuming pro-

cesses. The proposed method also provides a tool for implementing the informa-

tive priors of a model. The extension of this work with a higher dimensionality of

a limit state equation is recommended for future research.
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A case study: 17th Street Flood Wall,

New Orleans

Probabilistic approaches provide a better understanding of the failure mechanisms

and assessment of the occurrence probabilities in engineering problems. Besides,

it encourages us to take into account the consequences of failure in design pro-

cesses. Nevertheless, to get its full advantages a well defined model of the struc-

ture is necessary. Probabilistic finite elements offer the complementary part, but

the outcome is a time consuming process. To improve its efficiency the method

of Dynamic Bounds (DB) can be applied. This method speeds up the simulation

process through the storage of dynamic bounds, which are continually updated.

This means that the produced bounds can be kept and used for next series of

simulations. However, this method is efficient when the number of variables are

limited which mainly happens in geotechnical structures and flood defences. The

DB method is applied to the 17th Street flood wall which was a part of the failed

flood defence of New Orleans in hurricane Katrina. The variation of soil parame-

ters are assumed to estimate the reliability of this structure; this assumption will

infect the calculated probability of failure.

6.1 Introduction

Flood defences, which are mainly geotechnical structures, protect people from

floods in vulnerable areas and their failures usually result in numerous casualties

as well as a large economical damage. Besides, global warming and increasing of

the normal sea levels, leading to higher storm surges, increase the risk of flooding

for many cities and with that the importance of flood defences. Therefore, their

role in safety is quite obvious.

For instance, failure of the flood defences in New Orleans during Hurricane Ka-

67
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trina caused a lot of casualties and economical damage in New Orleans. This city

was protected by a system of levees, flood walls, and barriers. However, as Link

et al. (2006) states ’the system did not perform as a system: the hurricane pro-

tection in New Orleans and Southeast Louisiana was a system in name only’. In

fact, the flood protection systems are an example of a series system, and it is im-

portant that all of its components and elements are safe enough. In other words,

the reliability of each element of a flood system should be accurately assessed.

Therefore, an accurate safety assessment of the flood defences has a high priority,

and it is investigated by many research projects like as www.floodsite.net (2008).

In this case, two main issues should be addressed to get the optimal results: an

accurate model and a suitable reliability method. Probabilistic finite elements (see

Section 6.4) provide a tool by which we obtain a better understanding of the be-

havior of flood defences and a broader spectrum of its physical behavior based

on the engineering properties of the components, systems, and parameter varia-

tions. However, this approach is not cheap, and many analyses should be done to

find different aspects of model behavior and the role of different variables. Here,

we concentrate on the Level III reliability methods which were reviewed in Chap-

ter 2. These methods, especially Monte Carlo family, Level III, are more capable of

dealing with the complicated problems. This family includes importance sampling

(IS), explained in Melchers (1999), directional sampling (DS), presented in Nie

and Ellingwood (2000) and the extended methods addressed by Waarts (2000).

Each of these method has its advantages and disadvantages when it is coupled

with finite elements as was discussed in Chapter 2. Here we address a method

which can be coupled with Monte Carlo and then integrated with IS, DS or the

other methods in the Monte Carlo family.

In other words, an attempt is made in this study to overcome the addressed

problem by applying the method of Dynamic Bounds in a practical case. This

method accelerates the Monte Carlo process, benefiting from the property of

monotonicity of the problem regarding its variables. 17th Street Flood Wall is

considered as a case study to show the application of this method, and the results

are compared with the Monte Carlo method.

6.2 Importance of the flood defences in the Nether-

lands

The Wiki definition of flood-defences in the Netherlands is fair enough to be

quoted: ”The Netherlands has been struggling against floods since the first people

settled there. Over 60% of the country lies beneath mean sea-level. Countless peo-

ple have lost their homes and their lives to floods from the sea or the rivers that

could not be held by the flood-defences. The importance of the protection has

led the Dutch to dedicate a Department solely to the protection against floods.

Furthermore, local water-boards are an extra layer of government specially dedi-
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Figure 6.1: Aerial Photograph of the 17th Street Canal Breach in New Orleans,

USACE-e (2006).

cated to water management and protection against floods. This has resulted in a

very high level of flood-protection. Flood-protection remains a continuous point

of interest due to the vulnerability of the Dutch economy with regard to flooding”

(Wikipedia (2008)). Besides, there are similarities between the Netherlands and

New Orleans from the safety point of view. In fact, the main parts of the both

lands are below sea level which are being protected by levees, dikes, barriers, and

other flood defences. Moreover, the main industrial areas and the most densely

populated region of the Netherlands lie below normal sea level as is shown in Fig-

ure 6.2. It shows that the capital, Amsterdam, and some of the biggest cities like

Rotterdam and The Hague are below sea level. Therefore, a careful management

of the flood defences is vital in the Netherlands as well as doing research about

the assessment of the current situation of flood defences which motivates us to

do research about the different aspects of failure of the flood protection system in

New Orleans .

6.3 The flood wall at the 17th Street Canal, New Or-

leans

The 17th Street Flood Wall, the I-wall on the east side of the 17th Street Canal in

New Orleans, was breached in hurricane Katrina when the water level was around

figures/flood.eps
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Figure 6.2: The vulnerable areas in the Netherlands against flooding according to

www.kang.nl (2007).

figures/mapned2.eps
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8.0 feet as is shown in Figure 6.1. The failure of the flood wall at the 17th Street

Canal was one of the flood wall failures that occurred by Katrina. Flood walls

are constructed over a sheet pile penetrated into the dike as presented in Figure

6.3. This picture shows the flood wall including a concrete cap and concrete wall

(I wall) located over a sheet pile penetrated into the levee, and soil materials.

The materials of levee from above are two layers of clay, a thick layer of peat

(March), and then a layer of mixed clay and clay laid over a thick sand layer.

There is, in addition, a thin layer of sensitive clay located between March and the

intermix zone. The normal water level on the left hand side is at the level of +1

foot (0.3 meter), which can be accumulated behind the flood wall up to the +11

feet (3.3 m). The source of geometry and material properties for this research

project was the published materials by the Independent Levee Investigation Team

(Team (2006)) and Interagency Performance Evaluation Task Force (Link et al.

(2006); USACE-c (2006); USACE-e (2006)). Here, an attempt is made to show up

a broader spectrum of possible behaviors of the typical I-wall structure. Moreover,

we try to understand its full performance limits and to present new approaches to

create adaptive designs based on physical behavior of engineering components,

systems, and parameter variations.

6.3.1 Failure scenarios

A fault tree is used to separate the failure scenarios of a complicated system. Since

the main function of the designed flood wall at the 17th Street Canal was protect-

ing the city, its failure to do this job is the top event (TE) presented in the fault

tree in Figure 6.4. In this figure, there are two main intermediate events showing

the importance of a reliability analysis in two modes: expected and extreme con-

ditions. In other words, a flood defence system should be stable with the expected

loads and able to tolerate the overtopping or overflowing for the expected time.

This means that a good design should consider the resiliency. The main inter-

mediate events for the expected conditions in Figure 6.4 are sliding, piping, and

failure of the concrete wall. Sliding was the main mechanism for the failure of the

17th street flood wall concluded in USACE-g (2006). Therefore, it is the sliding

that forms the main focus of attention here. Nevertheless, the other failure modes

are shortly discussed. However, a fault tree has some disadvantages which may

lead designers to the wrong supposition that the failure modes can be separated

while is not always true in a physical system. This problem is addressed in Section

6.3.2.

Sliding

The stability analysis of slopes is not an easy task because the failure mode and

shape are depended on the geometry, boundary conditions, soil parameters, and

their variations. In fact, an evaluation of some variables such as the soil stratifi-
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(a) Partial sliding (b) Partial sliding (c) Sliding of whole system

Figure 6.5: The sliding for a typical system of dikes can be expected in three

categories; (a) partial sliding toward the landside, (b) partial sliding toward the

pool-side, and (c) sliding of the whole dike or levee.

cation and its in-place shear strength may prove difficulty of the problem. Mean-

while, water seepage through the slope and the choice of a potential slip surface

adds to the complexity of the problem. In general, sliding of a slope may occur

partially toward the landside, pool-side or the whole system; these three modes

of failure are presented in Figure 6.5.

Different methods are used to analyze the stability of slopes and assess the

safety factor, defined as a ratio of resistant forces over the driving forces. Those

methods can be divided into two categories; analytical methods and finite ele-

ment methods. The analytical methods are based on the physical modeling of

soil behavior via an imposed failure shape which can be circular or none circular.

Bishop’s famous model, which considers a circular failure shape, is one of the most

widely applied methods in stability of slopes advocated for instance by BAKER and

GARBER (1978). Finite elements models are the second category of analysis; they

are more accurate and more reliable methods which do not assume any failure

shape in advance, see for instance Griffiths and Lane (1999).

For sliding, the finite element analysis provides several advantages compared

to the analytical approach. The first advantage is that there is no need to define a

failure shape from the beginning. In fact, it finds the most probable failure shape

according to the maximum deformation of the nodes. Besides, there is no need to

consider separated failure modes; finite elements integrate all the failure modes

and presents a more realistic approach.

Piping

Piping plays a big role in the failure of embankment dams, dikes, and other flood

defences. The failure of the 17th Street Flood Wall, however, was not led by pip-

ing or seepage concluded by Team (2006). Therefore, in this study the probability

of failure by seepage is not discussed in detail. However, there are explicit (an-

alytical) limit state functions which can be approximately used to evaluate the

probability of piping, which might be a case for further research indicated in All-

sop (2007).

figures/sliding1.eps
figures/sliding2.eps
figures/sliding3.eps
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It is important to point it out that the piping itself can not be included in a

simple finite element model. However, the sand boil phenomenon can be mod-

eled. In fact, finite elements will assign the safety factor related to sand boil if its

probability of failure is higher than sliding.

Overtopping and overflowing

In a design process of every flood defences, a probability of overtopping and over-

flowing should be taken into account. Overtopping is defined as a condition where

waves pass over the flood defences. Also, overflowing is the situation where water

continuously flows over the flood defences.

In the design phase or reliability assessment of a flood defence, the expected

time of overflowing or overtopping can be estimated. Then, the flood defence

can be resiliently designed taking into account the condition of the system under

overloading. In other words, an infrastructure like a flood defence should sustain

the overtopping or overflowing conditions to provide us with a resilient flood

defence.

Resilience of the 17th street could have been considered. It could have been

designed such that it had been remained stable for the condition of erosion of the

flood wall support, overtopping, or overflowing. Meanwhile, the structural system

should be able to tolerate more moment as a result of decreasing the support.

These aspects are considered to the right of Figure 6.4.

Failure of the concrete wall

Failure of the concrete wall is considered as a failure mode in the fault tree anal-

ysis of the 17th street flood wall. Its safety factor can easily be estimated in a

linear relation between the maximally resistant moment of flood wall minus the

maximum moment produced in the cross section of the flood wall. Also, this fail-

ure mode can easily be taken into account by a finite elements model and can be

integrated into one model. Having established that failure of the concrete wall

was not the case at the 17th Street Canal, the properties of concrete wall are kept

constant during our probabilistic analysis.

6.3.2 An integrated model of failure mechanisms

A big advantage of the finite elements model is its ability to integrate different

failure modes into one accurate model. Therefore, the interaction of some of

the failure mechanisms are taken into account. For instance, sometimes the sand

boil or heave near the toe encourage the slope sliding process. These types of

interaction can be taken into account by the finite element method. In other

words, finite elements can consider the failure of a slope considering different

condition which may cause failure. For instance, whether the water elevation
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causes failure, or the internal water pressure of soil causes failure, or the slope of

embankment is not enough, they are not separated from each other. This means

that all the possible variables play their role in an integrated failure model, and

the prediction of failure is not artificially separated.

6.3.3 Loads and resistance

For the 17th Street Flood Wall, the water level behind the flood wall produced the

driving force. Therefore, by rising the water behind the flood wall, its probability

of failure increases. Therefore, the probability of failure, pf, is estimated for the

normal water level and five other higher levels: MSL +4, +6, +8, +10, and

+12 feet (1.2, 1.8, 2.4,3, and 3.6 meter). The last water level is higher than the

elevation of the flood wall, but it is considered to simply evaluate the resiliency of

this structure under the horizontal water pressure when overflowing occurs.

The main aspects of resistant variables at the 17th Street Flood Wall are soil

parameters. There is a total of ten soil parameters which vary both in hori-

zontal and vertical directions as presented in Table 6.1. The geotechnical data

are selected according to the previous research projects conducted by USACE-e

(2006) and Team (2006). Besides, a variety of information about the design of

the structure is available on the Ipet website. All the parameters are assumed to

be normally distributed, and the related coefficients of variation of soil layers are

assumed. The summary of soil parameters and their variation are presented in

Table 6.1. The soil layers are numbered according to the numbers presented in

Figure 6.7, and more discussion on the model parameters is provided in Section

6.5.1.

6.4 Probabilistic finite elements

Probabilistic Finite Elements (PFE), applicable in different engineering fields, has

advantages and some disadvantages. It is a powerful tool with accurate results

which enables us to take into account the variation of the input parameters, but it

is a time consuming process.

The finite element method is a powerful tool which presents accurate models

based on the dominant differential equation of a phenomenon. This technique

is one the most accurate and applicable methods which is used in different en-

gineering fields and all over the world. But probabilistic finite elements even

promises more. It provides a better understanding of the model as well as the

contribution of every random variable in the final and desired output (see Section

6.5.5). More importantly, probabilistic finite elements provide a more accurate

and reliable foundation for the reliability estimation considering variation of in-

puts. Figure 6.6 presents a variety of the possibilities which may be integrated

in an accurate model. This figure shows that variation of the geometry, loads,
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Soil Model Behavior Dis. Param. CV∗

1 Brown Clay MC Undrained Normal C⋄ 0.2

2 Gray Clay MC Undrained Normal C 0.2

3 Marsh Under Levee MC Undrained Normal C 0.3

4 Marsh Free Field MC Undrained Normal C 0.3

5 Sensitive Layer- MC Undrained Normal C 0.3

Under Levee

6 Sensitive Layer- MC Undrained Normal C 0.3

Free Field

7 Intermix Zone SSM Undrained Normal φ◦ 0.3

8 Gray Clay Horizontal MC Undrained Normal C 0.3

9 Gray Clay Vertical MC Undrained Normal C 0.3

10 Sand MC Drained Normal φ 0.3

Table 6.1: The variation of soil parameters considered in the probabilistic finite

element analysis. ∗ CV is the coefficient of Variation; the normal variation of soil

parameters are considered. ⋄ The cohesion of soil in the Mohr-columb soil model

behavior. ◦ The friction angle in the soil model.

material properties, environmental conditions, and dimension can be take into

account in a probabilistic way to get an estimation for the reliability or the prob-

ability of failure. Accurate reliability estimation is necessary for risk estimation,

risk management, planning management, and resiliency estimation. These issues

have been addressed in a paper which presents the advantages of an accurate

local estimation of the probability of the failure, called as micro scale risk assess-

ment by Rajabalinejad (2008). Figure 6.6 also addresses the important role of the

engineering judgment both in pre and post analysis. In other words, engineering

judgment is necessary for considering a realistic variation of inputs and verifica-

tion of the outputs. This supervision is necessary and more important than the or-

dinary finite element analysis. The reason for a higher importance is that there is

a possibility of getting a randomly generated input data producing results far from

the reality which are not acceptable by the engineering experience. In that case,

some constraints might be applied to help getting more realistic output. These

constraints, therefore, indirectly modify the probability density function (PDF) of

the input variables in addition to the output results. Besides, we need to take into

account the resiliency in the design process of an important structure. Resiliency

is an step further than the reliability in the way toward a safer society. As a re-

sult, it is important to take into account the resiliency of the flood defences into

account. Apart from the advantages provided by the probabilistic finite elements,

we need to address its disadvantages. The main disadvantage of a PFE model is

that it is a time consuming process. This matter has been addressed in Chapter 2.

As a conclusion, the PFE does a great job in the modeling and analysis, and it is
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Type Type of element Model Total no.

Soil 15-node triangle MC/SSM 289

Plate 5-node line Elastoplastic 14

Interface 5-node line Gap Elements 19

Table 6.2: Numbers and type of elements used in the 17th street canal model. MC

stands for Mohr-Coulomb, and SSM stands for Soft Soil Model.

also beneficial for us to apply this powerful tool to our flood defences. However,

it is expensive and we need to reduce its cost with some techniques which are

discussed in Chapters 2, 3, 4, and 5. Here we implement the probabilistic finite

elements into the case study of 17th Street Flood Wall. In this study the variation

of soil parameters are considered, and the average variation of layers are assumed.

Since the input variation of the parameters were assumed due to a lack of infor-

mation, we implemented a constraint into the analysis which the model should

remain stable under its own weight and without interfering of driving forces. In

other words, if this assumption is not fulfilled, the values of input variables are re-

jected. Therefore, the intention of this chapter is presenting a method to calculate

the safety of a structure, and we acknowledge that the outcomes may be infected

by the assumption of coefficient of variation (CV) presented in Table 6.1.

6.5 Failure simulations

6.5.1 Model

A finite element program, Plaxis, is used to analyze the behavior of the 17th Street

Flood Wall. The flood wall is modeled as depicted in Figure 6.7, according to

the geometry used by Team (2006). This is the basic model which is used in

the simulations. Table 6.2 presents type and number of elements used in the

modeling. Triangular elements are used to model the soil, plate elements to model

the flood wall and sheet-pile, and interface elements to model the separation of

sheet pile (steel) and the surrounding soil. Interface elements are assumed to be

fully impermeable.

Mohr-Columb (MC) and soft soil model (SSM) are used to model the soil be-

havior. It is preferred to mainly use MC criteria and reduce the calculation time,

given the fact that the more advanced models like SSM require more calculation

time. Besides, the MC Model gives good results for failure prediction.

Figure 6.8 shows a typical1 deformation of the flood wall and its foundation

when the water level is MSL +8 feet (2.4 m). The C/tan(φ) reduction technique

is used to plot the most probable scenario. As is shown in the figure, the flood wall

1The analysis of the model with the mean value of its variables,(µXi
).
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Figure 6.7: Plot of the finite element model for 17th street flood wall and its

foundation, modeled with Plaxis. This plot is based on the cross section of the

flood wall at 17th street canal and its foundation presented by Team (2006).

Figure 6.8: The plot of typical deformation of the 17th Street Flood Wall modeled

by Plaxis. The water level of MSL +8 ft (2.4 m) and the mean value of the

variables are selected in this analysis.

remains almost vertical when it is pushed and moved by the water pressure. This

deformation was also observed during its collapse reported by USACE-e (2006);

Team (2006).

The model behavior is compared with the results of Team (2006), as presented

in Figure 6.9. The arrow in this figure shows the final conclusion about the be-

havior of the 17th street flood wall. The stars (*) in this figure are the calculated

safety factors by mean value of resistant parameters introduced in Table 6.1. This

figure shows a good correspondence between the results.

6.5.2 Monte Carlo process

For the probabilistic analysis, a code is developed to interactively work with Plaxis.

This code feeds Plaxis with the desired probability density function of input vari-

ables, invokes it to calculate different adapted phases, and finally gathers the out-

puts. In other words, a finite element program is confined inside a probabilistic

figures/femodel.eps
figures/innerslide1.eps
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Figure 6.9: Calculated Safety Factors for the Plaxis models of 17th Street Canal

breach. The arrow shows the final conclusion about the behavior of the 17th

Street Flood Wall and transition between modes as suggested by Team (2006).

The star notation (*) is added to present the correspondence of the model used in

this study with the research project of Team (2006).

figures/fs.eps
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loop to provide a broader spectrum of physical behavior and better understanding

of engineering components and the effects of their variations.

A mobile failure mode is presented in the analysis; the failure shape varies with

the variations of parameters. This is possible by using the C/tan(φ) reduction

technique, which reduces all the resistant parameters with a growing ratio in

a step-by-step procedure. In fact, by every variation of soil parameters a new

problem is defined and solved. For instance, by variation of the clay parameters

in the foundation, the shape, curvature, and depth of sliding are adapted.

On the other hand, the variation of input parameters provides a wide range of

different combinations of variables under the probability density function (PDF).

Given independent variables, the probability of getting several variables at the

same time under the tail of their PDF is very small. One of the main sources of

this uncertainty is the uncertainty of distribution of input variables. But, it can

also be recovered by constraints which can define how acceptable the results are.

We here use a constraint to adjust our model, and this constraint is defined that

the model is stable before increasing water level. In other words, if a certain

combination of the input variables provide a condition that the system cannot

sustain its own weight, it is not accepted. Therefore, we apply this concept to our

probabilistic finite elements to improve our prior results and update it to a more

accurate level.

6.5.3 Safety factor

Safety factor is defined as a ratio between resistance and driving forces: Fs =
Resistance

Stress . Therefore, Fs = 1 is a threshold which clarifies the stability of a model

or its failure for values greater or smaller than 1, respectively. In finite elements,

however, we can investigate the stability or collapse of a model on the base of the

maximum deformation. To calculate the safety factor the resistant parameters,

mainly C and φ, are step by step reduced till failure of the model. Then, the ratio

for the reduction is considered as a safety factor. In another approach, when the

model is not stable itself, the ratio of loading is considered as the equivalent safety

factor. In fact, when we start to step by step load the model up until its collapse,

the percentage of loading can be considered as an indication of the safety factor.

6.5.4 Variation of safety factors

Safety factors are calculated as a result of the simulations of the 17th Street

Flood Wall’s behavior under different combinations of input variables, using the

C/tan(φ) reduction technique. This safety factor includes the process of slope

sliding, heave, or failure of the flood wall or sheet pile in the finite elements anal-

ysis. The calculated histograms are presented in Figure 6.10. These histograms

present the distribution of the safety factors for different water levels. It is shown

that the histogram of safety factors moves toward smaller values when the water



6.5. Failure simulations 83

N W.L. (ft) p̂f% nf N ≥ V(p̂f)
1 1218 +1 (0.3 m) ∗ 5 97000 > 0.05
2 1218 +4 (1.2 m) ∗ 246 2000 > 0.05
3 1218 +6 (1.8 m) ∗ 254 1600 > 0.05
4 1218 +8 (2.4 m) 43.6 687 520 0.032

5 1218 +10 (3.0 m) 82.9 1010 100 0.013

6 1218 +12 (3.6 m) 95.6 1165 20 0.006

Table 6.3: The probability of failure estimated in different water levels for the 17th

Street Flood Wall, New Orleans. nfis the number of failures. ∗ More calculations

are needed to estimate pf.

level increases. It can also be concluded that the response of a system is almost

normal when this system has a high reliability or when it certainly fails.

6.5.5 Probability of failure

Having the calculated safety factors, the cumulative distribution functions (CDF)

of safety factors are plotted in Figure 6.11 for different water levels behind the

flood wall. According to these figures, the integration of area less than 1 presents

the probability of failure. Therefore, by increasing the water level the area under

the CDF gets bigger as well as the CDF shifts toward the smaller values. An-

other way to calculate the probability of failure which is used here is dividing the

number of failures over the total number of simulations. Failure probabilities are

calculated for different water levels and presented in Table 6.3. Please note that

the number of calculations (N) in order to obtain an accurate result can be esti-

mated by Equation 6.1. In many engineering works, we accept the coefficient of

variation of the estimate pf less than 0.05: V(p̂f) ≤ 0.05. Where it is defined as
σ[X]
E[X]

. This value is also called the coefficient of variation. Therefore, we can get

the required number of simulation presented in Table 6.3.

N ≥ 1

V(p̂f)2
× (

1

p̂f
− 1). (6.1)

The probability of failures based on classical Monte Carlo simulations is pre-

sented in Table 6.3.

Figure 6.12 presents the calculated safety factors in a normal plot. It can be

said that for two extreme conditions, where the safety factors are barely below

one and where the safety factors are barely above one, the response is close to the

normal distribution. This fact can also be seen in Figure 6.10 and 6.11. In fact, its

main reason is the difference between two processes of calculating safety factors

when they are above or below one.



84 Chapter 6. A Case study, 17th Street Flood Wall

(a) W.L.=+1 ft (0.3 m) (b) W.L.=+8 ft (2.4 m)

(c) W.L.=+4 ft (1.2 m) (d) W.L.=+10 ft (3.0 m)

(e) W.L.=+6 ft (1.8 m) (f) W.L.=+12 ft (3.6 m)

Figure 6.10: Histograms of the calculated safety factors for different water levels

for the 17th Street Flood Wall, New Orleans.

figures/hist1.eps
figures/hist4.eps
figures/hist2.eps
figures/hist5.eps
figures/hist3.eps
figures/hist6.eps
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Figure 6.11: The plot of cumulative distribution functions (CDF) versus the safety

factor (Fs) for different water levels; they show the probability of failure of the

17th street flood wall, New Orleans.

figures/cdf.eps
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Figure 6.12: The plot of probability distribution functions (PDF) versus the safety

factors (Fs) for different water levels; they show the probability of failure of the

17th street flood wall, New Orleans.

figures/normalplot.eps
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6.5.6 Estimation methods for contribution to the failure

The contribution of every variable, Xi, in level III reliability methods can be

established according to different tools described in this section. On the basis of

these formula, the linear or nonlinear relation of each variable, Xi, regarding the

limit state function, Z, can be calculated. We call Xi a base variable and Z a

predicted variable. For instance, in the case of the flood wall, base variables are

the soil parameters and Z (or the predicted variable) is safety factor. Therefore,

estimation of the correlation between basic and predicted variables define their

contribution into the failure. In other words, having a higher correlation between

a basic variable (Xi) and the predicted variable (Z), a bigger contribution of that

variable into the failure is expected.

Product moment correlation

The product moment correlation or Pearson product moment correlation defines a

linear relation between two variables of Xi (base variable) and Z (predicted vari-

able) by Equation 6.2. It can take values between -1 and 1; these two boundary

limits present a completely linear relation between variables when Z = aXi ∓ b,

where a, b are two constants.

ρ(Xi , Z) =
Cov(Xi , Z)

σXi
.σZ

(6.2)

Cov(Xi , Z) = E(XiZ) − E(Xi)E(Z). (6.3)

Correlation ratio and linearity index

The correlation ratio of the predicted variable Z and base variable Xi is a square

product moment correlation between G and a function f (x) which maximizes this

correlation as presented in Equation 6.4.

CR(Xi , Z) = max
f

ρ2(Xi, Z) (6.4)

On the other hand, Equation 6.4 is maximized if f (Xi) = E(Z|Xi) presented

in Kurowicka and Cooke (2006), therefore:

CR(Xi , Z) = ρ2(Xi , E(Z|Xi)) =
Var(E(Z|Xi ))

Var(Z)
(6.5)

Equation 6.5 presents a ratio of the variance of the conditional expectation of Z
given Xi and the variance of Z. Since the square of the product moment correlation

is less than or equal to CR(Xi , Z), Equation 6.6 can measure the nonlinearity of

E(Z|Xi). Therefore, the bigger the difference, the higher the nonlinear relation

are expected.
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ρ2(Xi, E(Z|Xi)) − ρ2(Xi , Z). (6.6)

Rank correlation

Spearman rank correlation is a good measurement for two variables which are

nonlinearly related and they have monotone relationship. It is suggested that the

rank correlation is the best option to present the relation between parameters in

the monotonic problems. Spearman rank correlation is defined by the following

Equation:

ρr(X, Z) =

Cx + CZ −
n

∑
i=1

d2
i

2
√

CxCZ
, (6.7)

where

Cx =
n3 − n

12
− ∑

tx

t3
x − tx

12
,

CZ =
n3 − n

12
− ∑

tz

t3
z − tz

12
,

n

∑
i=1

d2
i =

n

∑
i=1

[R(xi)− R(zi)]
2.

Index tx and ty stand for the number of observations of X and Z with the same

rank and R(xi), R(zi) stand for the rank ordered X and Z variables presented

in William et al. (1992).

6.5.7 Contribution of variables to failure

Equation 6.2, which is usually used in engineering applications, is based on the

linear correlation between basic variable (Xi) and the predicted variable (Z).

Since, we cannot be concerned about the linear relation, all three methods ex-

plained in Section 6.5.5 are applied to the flood wall case study. Further discus-

sion is necessary to make our decision to select the best tool. Table 6.4 presents

the calculated product moment correlation (ρ), correlation ratio (CR), and rank

correlation (ρr) for three water levels. This table is ranked according to the abso-

lute value of product rank correlation for MSL +8 ft (2.4 m), as it is common in

engineering works.

It is clear in Table 6.4 that the Marsh layer and Gray Clay layer (Layer numbers

3 and 8 in Figure 6.7) make the biggest contribution. In fact, product moment cor-

relation (ρ), correlation ration (CR), or rank correlation (ρr) certify this conclu-

sion. Yet, in the next step, sorting the parameters according to their real influence
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on the probability of failure depends on the criteria which are selected. Accord-

ing to the previous discussion in Section 6.5.5 the product moment is appropriate

when the relation between the basic variables, Xi, and the predicted variable, Z,

is linear. The correlation ratio needs interpolation of variables to be calculated,

as is shown in Equation 6.5. Here, the third order polynomial interpolation is

assumed according to the visualization of data and regression coefficients. How-

ever, the value of CR is sensitive to the interpolation function. For instance, the

E(Z8|X3)
2 and E(Z8|X5), where the Z8 is the vector of safety factors of the flood

wall for MSL +8 ft (2.4 m), X3 is the soil number 8, and X5 is the soil number 5,

are interpolated by the Equation 6.8 and Equation 6.9, respectively.

E(Z8|X3) = −0.0182 + 0.0055X3 (6.8)

−0.0000X3
2 + 0.0000X3

3.

E(Z8|X5) = 0.2110 + 0.0110X5 (6.9)

−0.0001X5
2 + 0.0000X5

3.

To make the interpolation more clear, Figures 6.13(a) and (b) present the

graph of Equations 6.8 and 6.9, and the related graph of expectation of Z8 given

X3 and X5. In these Figures it is clear that the stability of the flood wall is sensitive

to layer number 3 and almost indifferent to layer number 5.

The rank correlation has two advantages and apparently provides a good cri-

teria for ranking of variables. First, it figures out nonlinear correlations; second, it

is a suitable choice when there is monotonicity, which is also an essential assump-

tion in DB technique. Therefore, the Spearman ratio or rank correlation will be

a good option for ranking the variables in geotechnical flood defence problems.

This conclusion requires further investigation.

6.6 Dynamic bounds (DB) applied to the flood wall

Dynamic bounds (DB) provide two main advantages when they are coupled with

Monte Carlo simulations. First, it can speed up the simulation when there are

a limited number of variables. Second, it makes it possible to store and use the

generated bounds for the next Monte Carlo simulations. These two advantages

may bring the probabilistic finite elements from research into the practical field of

risk assessment for flood defences. Besides, considering the fact that the efficiency

of DB increases for a higher number of simulations, this method is suitable when

2The expectation of Z8 given X3; Z8 is the vector of safety factors of the flood wall for MSL +8
ft (2.4 m), X3 is the soil number 3
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(a) E(Z8|X3) versus variation of soil number 3.

(b) E(Z8|X5) versus variation of soil number 8.

Figure 6.13: The expectation of failure of the 17th Street Flood Wall for MSL

+8 ft (2.4 m) versus variation of Marsh under levee (soil number 3) in figure

(a) and Sensitive layer(soil number 5) in figure (b). The third order polynomial

interpolation curve is depicted together with the pedestrian graph of expectation

presented by the dotted line.

figures/ce1.eps
figures/ce22.eps
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Material
Soil WL=+4 ft WL=+8 ft WL=+10 ft

Nu. ρ ρr ρ ρr ρ ρr

Marsh Un- 3 .391 .689 .359 .493 .546 .677

der Levee

Gray Clay 8 .278 .438 .242 .547 .284 .365

Table 6.5: The first couple of influential variables in the stability of the flood wall;

using product moment correlation, rank correlation, or correlation ratio conduct

to these variables.

a higher number of Monte Carlo is required. Therefore, the probabilistic finite

element with its great advantages can be used to calculate the probability of fail-

ure of many structures. To present this approach, the coupled system of dynamic

bounds with Monte Carlo is presented in this section. The accuracy of product

moment correlation and rank correlation in ranking of influential variables is also

investigated.

6.6.1 DB considering two variables

The first two variables of Table 6.4 are selected according to their correlation

and presented in Table 6.5. As a matter of fact, accepting each of the methods

introduced in Section 6.5.5 leads to this selection. These variables are the main

influential soil layers and they play the major role in failure of the flood wall.

Previous analyses of the 17th street canal, moreover, shows that the Marsh layer

under the embankment(layer number 3) with the Gray layer(layer number 8) are

the main layers, see Rajabalinejad et al. (2007a).

Applying the DB technique to these variables conclude Table 6.6. The second

column of this table shows the calculated number of DB in which a low variance

is obtained3. The calculated probability of failure for different water levels in this

table are close to the values presented in Table 6.3; it also verifies that these two

variables control the stability condition of the flood wall.

6.6.2 DB considering three variables

In this section three are implemented in DB to simulate a more accurate behavior

of the 17th Street Flood Wall, and estimate its probability of failure. In this case,

the first three influential variables are considered. Yet, different ranking criteria

give different outputs. In fact, a good and efficient criterion is essential for ranking

variables in DB. The results of this section can provide us two conclusions; first,

having a comparison between the results of three dimensional DB and Classical

Monte Carlo clarifies that if the obtained accuracy is enough, or using a higher

3It is assumed that V( p̂f) < 0.05 is acceptable.
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W.L.
DB Failures Stables

Equival.
p̂f V(p̂f)(feet) MC

+4 (1.2 m) 145 2594 7395 10000 25.9 0.017

+6 (1.8 m) 97 601 1294 1895 31.7 0.038

+8 (2.4 m) 119 603 897 1500 40.2 0.031

+10 (3.0 m) 72 469 131 600 77.8 0.022

+12 (3.6 m) 38 431 24 455 93.5 0.012

Table 6.6: The probability of failure calculated by the 2D-DB of variables of Table

6.5.

Material
Soil WL=+4 ft WL=+8 ft WL=+10 ft

Nu. ρ ρr ρ ρr ρ ρr

Marsh Un- 3 .391 .689 .359 .493 .546 .677

der Levee

Gray Clay 8 .278 .438 .242 .547 .284 .365

Gray Clay 2 .222 .165 .194 .23 .244 .226

Table 6.7: The first three influential variables in stability of the 17th Street Flood

Wall; variables are selected according to the product moment correlation, ρ (see

Equation 6.2).

dimension of DB is necessary. Second, the influence of variables according to

product moment correlation and rank correlation can be investigated to clarify

which criteria are more efficient for ranking.

Therefore, the first three influential variables are selected according to the

product moment correlation (ρ) and rank correlation (ρr) in Table 6.7 and Table

6.6.2, respectively. The correlation ratio (CR) is not considered because of the

fact that its results are dependent on the interpolation function. Meanwhile, the

higher degree of interpolation function does not necessarily yield better results.

Table 6.7 shows that soil number 3, 8, and 2 are the most important parame-

ters in the failure of the flood wall for different water levels. Table 6.6.2, however,

presents that soil number 3, 8, and 4 are the main influential variables and their

sequence is changed when the structure’s behavior is nonlinear in W.L.=+8 ft

(2.4 m).

In the next step, three dimensional DB are applied to the variables presented

in Tables 6.7 and 6.6.2. The results are presented in Tables 6.8 and 6.6.2. Now,

a comparison between results of these tables with the results of Classical Monte

Carlo (CMC) shows that the results in Table 6.6.2 are closer to the CMC results.

This is an important point for using DB technique.

As a result, it can be concluded that both the product moment correlation (ρ)

and the rank correlation (ρr) provide similar results. Therefore, it is advised to do

more research in order to determine which of these methods is better.
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W.L.
DB Failures Stables

Equival.
pf V(p̂f)(feet) MC

+4 (1.2 m) 190 424 1076 1500 28.2 0.041

+6 (1.8 m) 231 670 830 1500 44 0.029

+8 (2.4 m) 221 781 719 1500 52 0.024

+10 (3.0 m) 52 162 32 194 82.2 0.035

+12 (3.6 m) 23 102 6 108 95.1 0.022

Table 6.8: The probability of failure calculated by DB coupled with MC for the

first three variables according to product moment correlation (Table 6.7).

Material
Soil WL=+4 ft WL=+8 ft WL=+10 ft

Nu. ρ ρr ρ ρr ρ ρr

Gray Clay 8 .278 .438 .242 .547 .284 .365

Marsh Un- 3 .391 .689 .359 .493 .546 .677

der Levee

Marsh Fr- 4 .208 .353 .104 .283 .116 .11

ee Field

Table 6.9: The first three influential variables in stability of the 17th Street Flood

Wall; variables are selected according to rank correlation, ρr (see Equation 6.7).

W.L.
DB Failures Stables

Equival.
p̂f V(p̂f)(feet) MC

+4 (1.2 m) 171 377 1123 1500 25.1 < 0.05
+6 (1.8 m) 207 526 939 1465 35.6 < 0.05
+8 (2.4 m) 202 322 438 1500 42.9 < 0.05
+10 (3.0 m) 66 157 37 194 80.9 < 0.05
+12 (3.6 m) 29 102 8 110 92.7 < 0.05

Table 6.10: The probability of failure calculated by DB coupled with MC for the

first three variables according rank correlation (Table 6.6.2).
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6.7 Summary of results

According to the monotonic property, presented in many geotechnical flood de-

fence systems, dynamic bounds are applied to this research; they not only main-

tain the accuracy of a Monte Carlo method, but also speed up the simulation

process and store the boundaries.

The performance of rank correlation (ρ) is investigated and compared to prod-

uct moment correlation (ρr). The results show that rank correlation is a good tool

for ranking the basic variables. Figure 6.14 shows contribution of soil parameters

to the failure of the 17th Street Flood Wall according to rank correlation.

The dynamic bounds (DB) method is coupled with Monte Carlo to simulate the

behavior of the 17th Street Flood Wall. Figure 6.15 presents the calculated proba-

bility of failures with different methods and different water levels. The presented

methods are classical Monte Carlo, two dimensional DB according to Table 6.5

(shown in the figure as DB2D), three dimensional DB ranked by product moment

correlation (see Table 6.7), and three dimensional DB ranked by rank correlation

(see Table 6.6.2) . As a result, three dimensional DB can be used by product mo-

ment correlation or rank correlation to estimate the reliability of the flood wall.

Figure 6.15 also presents behavior of the flood wall under a water level beyond

the design criteria which can be considered as resiliency. In fact, the colored part

of this figure presents the probability of failure of the 17th Street Flood Wall in

overflowing or overtopping under hydrostatic pressure. In general, having this

plot for a flood defence system, we would be able to assess its behavior, risk, and

reliability.

6.8 Conclusion

A probabilistic approach provides a better understanding of the failure mecha-

nisms, occurrence probabilities, as well as consequences of failure. However, to

achieve these advantages, a well defined model of the structure together with a

robust reliability method are needed. In flood defence systems, the finite element

method is a good tool for the accurate modeling as well as integrating different

failure mechanisms. Also risk and reliability assessment of flood defences is very

important for the improvement of the condition and prevent from catastrophes as

a result of a weak flood defence.

In the present study, an attempt is made to introduce a probabilistic method

integrated with finite element analysis to estimate4 the probability of failure of

flood defences. The behavior of the 17th Street Flood Wall as a case study is

investigated by this method. It is shown that DB speeds up the Monte Carlo

4As it is indicated in the introduction, the variation of soil parameters are assumed to estimate
the reliability of this structure; this assumption will infect the calculated probability of failure.
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(a) W.L.=+4 ft (1.2 m)

(b) W.L.=+8 ft (2.4 m)

(c) W.L.=+10 ft (3.0 m)

Figure 6.14: The contribution of different variable parameters (in Table 6.1) on

the probability of failure of the 17th street flood wall, New Orleans; they are

ranked according to the rank correlation (ρ) and the soil numbers are according

to the Table 6.1. Every figure is related to a specified water level.

figures/influence1_2.eps
figures/influence2_2.eps
figures/influence3_2.eps
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Figure 6.15: The estimated probability of failure of the 17th Street Flood Wall

for different water levels. Different reliability techniques are coupled with finite

elements analysis: CMC presents the Classical Monte Carlo, DB2D presents two

dimensional dynamic bounds (DB), DB3D-1 presents three dimensional DB con-

sidering the rank correlation, and DB3D-2 presents three dimensional DB consid-

ering product moment correlation.

simulation technique and stores the boundary values. The stored boundary values,

then, can be used to make the next simulations very cheap and available.

Resilient flood defences should be seriously taken into account in design pro-

cesses. If as is shown for the 17th Street Flood Wall, overtopping or overflowing

occurs how reliable this structure is? The results also certify the conclusion of the

research team that ”Resilience was not an element in the New Orleans Hurricane

Protection System design” concluded by USACE-e (2006).

It was theoretically concluded and also observed in the 17th Street Flood Wall

that both of the product moment correlation and rank correlation provide a good

tool to rank the influence of variables for the problems having monotonicity. A

good ranking criterion is important when dynamic bounds are used.

figures/pf.eps
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7

Conclusion and further research

7.1 Conclusion

In this dissertation, some drawbacks of the applied reliability methods were dis-

cussed, and an attempt is made to introduce new methods for evaluation of an

implicit or explicit limit state equations (LSE) assuming that the LSE is a time-

consuming process which makes it impractical to use normal reliability methods

mainly because of the prohibitive computing effort.

Monte Carlo (MC) is accepted as a basic method which presents high accu-

racy given enough simulations. In this method, all possible combination of the

variables are considered given enough number of realizations. The method of

dynamic bounds (DB), based on the Monte Carlo, is introduced to take the ad-

vantage of monotonicity and a limited number of variables, which is usually the

case in engineering problems. This method, as a result, is fast and robust and

can be integrated with complicated limit state equations like finite elements. Its

main advantage over direct Monte Carlo simulation is that only a fraction of the

limit state function evaluations (finite element analyses) is needed, without loss

of accuracy.

By breaking up the simulation in two or more stages, initial estimates of the

computing effort to attain a required level of accuracy can be updated at inter-

mediate stages, resulting in good predictions of computation costs. Besides, the

bounds can be stored for the next series of simulations, which presents another

important advantage of this method. Moreover, the method can be coupled with

the importance sampling technique, further reducing the required calculations,

speeding up the whole procedure.

DB divides the range of a LSE into three parts of stable, unstable, and un-

qualified. Attempts can be made to shrink the unqualified part as it is addressed

by improved dynamic bounds (IDB), given the order of the LSE with respect to
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its variables. As a result, the DB is improved by defining a lower bound of the

response surface in the unqualified region. This is done on the base of a mini-

mization process. Improved dynamic bounds (IDB) presents more efficiency and

accuracy without implementing more uncertainty into the model. It still can be

coupled with importance sampling technique, and more importantly the bounds

can be stored for the next series of simulations.

The method of Bayesina Monte Carlo (BMC) is introduced where the Bayesian

technique is implemented in Monte Carlo simulations. In this study, an attempt

is made to get the prior information of the model incorporated to the current

level of the analysis. This is a step forward in Monte Carlo simulations. In fact,

a link was presented among the information of each pixel and its neighbors. In

other words, information of each point passes through this link and effect the

others. Besides, this approach provides a nice tool to get the other priors incorpo-

rated to the Monte Carlo simulations. For instance, the dynamic bounds method,

presented in Chapter 3, assumes monotonicity which can be implemented as an

informative prior.

Give more information, do less computation is the common base of DB, IDB,

and BMC. The Monte Carlo method is reluctant to further information over the

limit state equation (LSE). The method of DB takes the monotonic behavior of

a model into account which is mainly presented in engineering problems. The

method of IDB requests some information over the form of a LSE to shrink the

size of unqualified space based upon the certain bounds. BMC is a more general

and promising method, which takes into account the prior information over the

LSE or from the previous simulations. In conclusion, All of the suggested proce-

dures can speed up the Monte Carlo simulations integrated with finite elements or

the other highly complex and time consuming processes. The proposed methods

also provide a tool for implementing informative priors regarding the considered

model.

In addition to the theoretical background, the theories discussed above are in

correspondence with real problems. For instance, the method of dynamic bounds

is implemented to a complicated flood defence structure in the 17th Street Flood

Wall to assess its probability of failure with less effort than the MC. DB technique

is implemented in this research which speeds up the Monte Carlo and stores the

stable and unstable bounds. The stored bounds, then, can be used to make the

next simulations very cheap and accessible.

It was theoretically concluded and also observed (in the 17th Street Flood

Wall) that the rank correlation provides a good tool to rank the influence of vari-

ables for the problems having monotonicity. A good ranking criterion is important

when dynamic bounds are going to be applied.
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7.2 Further research

Dynamic bounds (DB) is strongly recommended to be applied to the important

structures like flood defences in the Netherlands.

Improved dynamic bounds (IDB) suggests extending the dynamic bounds of a

limit state equation (or a model) by applying some extra information. However,

the Monte Carlo process and development of the stable, unstable, and unqualified

spaces are stochastic processes. Therefore, the unqualified part of the range of a

LSE can be considered as a part of a stochastic process. Therefore it is possible to

extended dynamic bounds without any certain assumption over the order of the

polynomial; however, one expects a controlled amount of uncertainty contributing

to the result.

Bayesian Monte Carlo is a promising method which can be implemented to

many problems without any severe limitation.

Toward applications. The materials of this dissertation are suggested for solv-

ing practical problems, and it is recommended to utilize these theories and bring

the reliability analysis more into the everyday engineering work.
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A

Prior

A.1 Derivation of the prior

Equation 5.15 presented the joint probability density function of the pixels, given

the prior information as

P (U|) ≡ P(u0, · · · , uv+1|φ, I)

∝
∫

1
φv+2 exp

{

− ∆2

2φ2 F(u)
}

× · · · dui · · ·
︸ ︷︷ ︸

i 6=j

, (A.1)

where,

F(u) = [(
u1 − u0

δ0
)2 +

v

∑
i=1

(
ui − ui−1δr,i − ui+1δl,i

δi
)2 + (

uv+1 − uv

δv+1
)2]

and

∆ = δ0 + · · ·+ δv+1.

(F(u) which is a part of the prior may be rewritten to the Matrix form.

F(u) = [(
u1 − u0

δ0
)2 +

v

∑
i=1

(
ui − ui−1δr,i − ui+1δl,i

δi
)2 + (

uv+1 − uv

δv+1
)2].

To write F(u) in the matrix form, it needs to be rewritten as

F(u) =
u2

1−u2
0−2u1u0

δ2
0

+
u2

v+1−u2
v−2uv+1uv

δ2
v+1

+
v

∑
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i −2 uiui−1δr,i−2 uiui+1δl,i+u2

i−1δ2
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i+1δ2
l,i

δ2
i

.
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It still may be extended as

F(u) =
u2

1

δ2
0
− 2 u1u0

δ2
0

+
u2

0

δ2
0

+
u2

1
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1
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+
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2

+
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3δ2
l,2

δ2
2

+ . . .

Then, the rearrangement of the prior leads toward the matrix multiplication

as presented in Equation A.2.

F(u) = uTR u, (A.2)

where

u = (u0, u1, . . . , uv+1) ,

and

R ≡ ∆2 ×
























1
δ2

0
+

δ2
r,1

δ2
1

−1
δ2

0
− δr,1

δ2
1

· · · · · · 0

−1
δ2

0
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. . .

...

0
. . .

. . .
. . . 0

...
. . .

. . .
. . .

δl,v.δr,v

δ2
v

...
. . .

. . .
. . . −1

δ2
v+1

− δl,v

δ2
v

0 · · · · · · −1
δ2

v+1

− δl,v

δ2
v

1
δ2

v+1

+
δ2

l,v

δ2
v
























.

R is an (v + 1) × (v + 1) matrix, and its more completed representation is

given in Equation 5.16. Now using Equation A.2 the prior Equation A.1 can be

rewritten as

P (U|φ, I) ∝
1

φv+2
exp

{

− 1

2φ2
uTRu

}

. (A.3)
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B.1 Derivation of the Likelihood

Given the prior and the data point, Equation 5.21 presented the likelihood. The

exponent of Equation 5.21 can be written in the matrix form.

∆2 ×
v+1

∑
i=0

(di − uiz)
2

δ2
i

. (B.1)

where

z ≡
{

1, if data is measured in pixel i,
0, elsewhere.

and

di ≡
{

di, if data is measured in pixel i,
0, elsewhere.

The matrix representation of Equation B.1 can be written as

∆2
v+1

∑
i=0

(di−uiz)
2

δ2
i

= ∆2
v+1

∑
i=0

(
d2

i −2diuiz+u2
i z

δ2
i

)

= ∆2
v+1

∑
i=0

d2
i

δ2
i

− 2
v+1

∑
i=0

diuiz
δ2

i

+
v+1

∑
i=0

u2
i z2

δ2
i

= ∆2[dδ]T[dδ] − 2∆2[dδ]T[uδ] + uTSu.

(B.2)

Where the vector of data d has zero value wherever there is no data value as-

signed to a given pixel, and it has the data value wherever there is a data assigned

to a pixel. Therefore, S is an (v + 1) × (v + 1) diagonal matrix with ∆2

δ2
i

on every
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diagonal element, where the data has been measured and zero everywhere else.

For example, if d = [d1, 0, 0, d2, 0, d3, 0]T then the S is

S =
















∆2

δ2
1

0 0 0 0 0 0

0 0 0 0 0 0 0
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














.

And δ is a diagonal matrix of the size (v + 1)× (v + 1) where 1
δi

is located on

each correlated cell. It is, therefore, in the form of

δ =















1
δ0

0 0 · · · · · · · · · 0

0 1
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0
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0 0 1
δ2

. . .
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. . .
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. . . 0 1
δv

0

0 · · · · · · · · · 0 0 1
δv+1















.

Using equation Equation B.2, the likelihood function, Equation 5.18, can be

rewritten as

P (D|σ, U, I) ∝
1

σN
exp

{

− 1

2σ2

(

∆2[dδ]T [dδ] − 2∆2[dδ]T[uδ] + uTSu
)}

, (B.3)

which is equivalent to Equation 5.21.
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List of Symbols

This section lists the definition of used symbols in alphabetical order. They are

additionally explained in the text when they first appear. Units and abbreviations

are not included in this list. They will be defined in the text when first used.

Abbreviations

BMC Bayesian Monte Carlo

CDF Cumulative Distribution Function

DB Dynamic Bounds

DBIS Dynamic Bounds integrated with Importance Sampling

FORM First Order Reliability Method

JPDF Joint Probability Density Function

IDB Improved Dynamic Bounds

IDBIS Improved Dynamic Bounds integrated with Importance Sampling

IS Importance Sampling

LSE Limit State Equation

LSF Limit State Function

MC Monte Carlo

NI Numerical Integration

PDF Probability Density Function

Rel.s.e Relative Standard Error

SORM Second Order Reliability Method

TE Top Event in a fault tree
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Small letters

c A vector of the positions of data points: c = (c1, . . . , cn)
d A vector of the observed data points: d = [d0, . . . , dv+1]

T

ei Error related to the ith pixel in the prior of BMC

ec Error related to the ith pixel in the likelihood of BMC

ps Probability of a random vector lies above the upper bound

pe
s Probability of a random vector lies above the extended upper bound

p̂s An estimate for ps

p̂e
s An estimate for pe

s

pu Probability of a random vector lies below the lower bound

pe
u Probability of a random vector lies below the extended lower bound

p̂u An estimate for pu

p̂e
u An estimate for pe

u

pf Probability of failure

p̂f An estimate for pf

nf Number of failure in Monte Carlo simulation

p∆ Probability of a random vector hits the unqualified space

uj Target pixel in BMC

u A vector of pixel values: u = [u0, . . . , uv+1]
T

v Number of internal pixels

xi A scaler value

Capital letters

I Prior information in BMC

D The JPDF of data points in BMC

G Combined matrix of the prior and likelihood

N (mainly) Number of simulation in Monte Carlo

Q Presents the relation of the pixel values according to the prior

R The covariance matrix of the pixel values which comes out of the

prior

S A diagonal matrix which relates to the position of data vlues

S The set of stable bound in DB

Sb The set of points on the stable bound in DB

Se
b The set of points on the extended stable bound in IDB

U The set of lower bound in DB

U The JPDF of pixel values in BMC

Ub The set of points on the unstable bound in DB

Ue
b The set of points on the extended unstable bound in IDB

Z A random variable which represents G(~x)



List of Symbols 115

Small Greek

α Influence factor of variables in FORM

β Reliability index in the FORM

δi Distance of left and right neighboring pixels

δl,i Implemented weight to the right neighbor pixel

δr,i Implemented weight to the left neighbor pixel

ǫ The regularizer in BMC, ǫ = σ
φ

σ Standard deviation of the likelihood

ξ The horizontal local axis in IDB

η The vertical local axis in IDB

Capital Greek

∆ Unqualified space in DB and IDB

∆ Two times of the distance between uv+1 and u0

Λ Eigenvalues of A matrix

Λ Eigenvalues of A matrix in the singular decomposition format

ΛR Eigenvalues of the matrix R

ΛǫR Eigenvalues of the matrix ǫ2R

φ Standard deviation of the prior

φi Standard deviation of the prior proportional to the δi

Mathematics

Cov(Xi, Xj) Covariance of random variables Xi and Xj

E[X] Expected value of the random variable, X
σ[X] Standard deviation of a random variable X
fXi

The pdf of a random variable, Xi

f (u) Prior model in BMC

G(~x) Implicit or explicit limit state equation

E[Xi|Xj] Expected value of a variable Xi given Xj

P(Xi > xi) Probability of getting a random value greater than xi from fXi

CR(Xi, Xj) Correlation Ratio of of random variables Xi and Xj

ρ(Xi, Xj) Product moment correlation of random variables Xi and Xj

ρr(Xi, Xj) Rank Correlation of of random variables Xi and Xj

~X A vector of random variables: (X1, X2, · · · , Xn)

~x A vector of scalers (x1, x2, · · · , xn)

V( p̂f) The coefficient of variation of p̂f

∝ The proportional sign
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examples, 37
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Importance Sampling (IS), 5
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Improved dynamic bounds, 23
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